Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 1, 7 - 17, 30.04.2019

Öz

Kaynakça

  • [1] Banach, S. Sur les fonctionnelles lin´ eaires II. Studia Math. 1 (1929), 223–239. [2] Ben-El-Mechaiekh, H. Intersection theorems for closed convex sets and applications, Missouri J. Math. Sc. 27(1) (2015) 47–63. arXiv:1501.05813v1 [math.FA]. [3] Ben-El-Mechaiekh, H., Deguire, P. et Granas, A. Une alternative nonlineaire en analyse convexe et applications, C. R. Acad. Sci. Paris 295 (1982) 257–259. [4] Buskes, G. The Hahn-Banach Theorem surveyed, Rozprawy Matematyczne, Vol.No.327, 1993. [5] Dunford, N and Schwartz, J.T. Linear Operators, Part I: General Theory. Interscience Pub., New York, 1957. [6] Edwards, D.A. On inequalities involving functions on a convex set, Symposia Mathematica, Vol.XVI (Convegno sulla Topologia Insiemistica e Generale, INDAM, Roma, Marzo, 1973), pp.181–190. Academic Press, London, 1974. [7] Fan, K. Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z. 68 (1957) 205–216. [8] Fan, K. A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961) 305–310. [9] Granas, A. and Lassonde, M. Sur un principe g´ eom´ etrique en analyse convexe (French. English summary) [On a geometric principle in convex analysis], Studia Math. 101(1) (1991) 1–18. [10] Granas, A. and Lassonde, M. Some elementary general principles of convex analysis. Contributions dedicated to Ky Fan on the occasion of his 80th birthday, Topol. Methods Nonlinear Anal. 5(1) (1995), 23–37. [11] Granas, A. and Liu, F.C. Remark on a theorem of Ky Fan concerning systems of inequalities, Bull. Inst. Math. Acad. Sinica 11(4) (1983) 639–643. [12] Hahn, H. Uber lineare Gleichungssysteme in linearen Räumen, J. Reine Angew. Math. 157 (1926) 214–229. [13] Hirano, N., Komiya, H., and Takahashi, W. A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982) 333–340. [14] Horvath, C. Some of Sion’s heirs and relatives, J. Fixed Point Theory Appl. 16 (2014), 385–409. DOI 10.1007/s11784-015-0225-4 [15] Kakutani, S. Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. Tokyo, 14 (1938) 242–245. = Selected Papers, Vol.I, Ch.3, pp.144–147.Birkhäuser, 1986. [16] Kakutani, S. A proof of the Hahn-Banach theorem via a fixed point theorem, Selected Papers, Vol.I, Ch.3, pp.154–158. Birkh¨ auser, 1986. [17] Kelley, J.L., Namioka, I. and coauthors Linear Topological Spaces, D. Van Nostrand Co., Inc., Princeton-Toronto-London-Melbourne, 1963. [18] König, H. On certain applications of the Hahn-Banach and minimax theorems, Arch. Math. 21 (1970) 583–591. [19] Lassonde, M. Hahn-Banach theorems for convex functions, Minimax Theory and Applications (B. Ricceri and S. Simons, eds.), pp.135–145, Kluwer Academic Pub., Dortrecht / Boston / London, 1998. [20] Narici, L. and Beckenstein, B.E. The Hahn-Banach theorem: the life and times, Top. Appl. 77 (1997) 193–211. [21] Park, S. Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187–222. [22] Park, S. The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042. [23] Park, S. A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132. [24] Park, S. A unification of generalized Fan-Browder type alternatives, J. Nonlinear Convex Anal. 17(1) (2016) 1–15. [25] Park, S. Theory of Abstract Convex Spaces, Nat. Acad. Sci., Republic of Korea, 410pp., 2017. [26] Park, S. A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017) 1–51. [27] Park, S. A panoramic view of the realm of Ky Fan’s 1952 lemma, to appear in Proc. NACA2017. [28] Park, S. Contributions of Andrzej Granas to the KKM theory, Nonlinear Analysis Forum 23 (2018) 1–16 [29] Park, S. The Hahn-Banach type or the KKM type? J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 58(1) (2018) 1–33. [30] Park, S. Variational relations in abstract convex spaces, Res. Fixed Point Theory Appl. vol.2018. Article ID 2018014, 08 pages. [31] Park, S. A panoramic view of the KKM theory on abstract convex spaces, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 57(2) (2018) 1–46. [32] Park, S. Various examples of the KKM spaces, Presented at IWNAO2018. [33] Park, S. Applications of convex-valued KKM maps, to appear in Proc. RIMS2018. [34] Park, S. Various variational relation problems in abstract convex spaces, Advances in Nonlinear Variational Inequalities 22 (2019) 1–13. [35] Park, S. and Jeong, K.S. Fixed point and non-retract theorems – Classical circular tours, Taiwan. J. Math. 5 (2001), 97–108. [36] Rudin, W. Functional Analysis, McGraw-Hill, 1973. [37] Simons, S. Minimal sublinear functionals, Studia Math. 37 (1970) 37–56. [38] Simons, S. Variational inequalities via the Hahn-Banach theorem, Arch. Math. 31 (1978) 482–490. [39] Simons, S. Minimax and variational inequalities. Are they of fixed point or Hahn- Banach type? Game Theory and Mathematical Economics, pp.379–387. North Holland, 1981. [40] Simons, S. Remark on: Remark on a theorem of Ky Fan concerning systems of inequalities[Bull. Inst. Math. Acad. Sinica 11 (1983), no.4, 639–643] by A. Granas and F.C. Liu, Bull. Inst. Math. Acad. Sinica 13(3) (1985), 279–282. [41] Simons, S. Two-function minimax theorems and variational inequalities for func- tions on compact and noncompact sets, with some comments on fixed-point theorems, Proc. Symp. Pure Math., Amer. Math. Soc. 45(2) (1986) 377–392. [42] Simons, S. Are minimax theorems and variational inequalities of Hahn-Banach or Brouwer type? Proc. Conf. on Optimization and Convex Analysis (Oxford, MS, 1989), No.6, 8pp., Univ. Mississippi, University, MS. 1989. [43] Simons, S. A new version of the Hahn-Banach theorem, Arch. Math. 80 (2003) 630–646. [44] Simons, S. Hahn-Banach theorems and maximal monotonicity, Variational Analysis and Applications, pp.1049–1083, Nonconvex Optim. Appl. 79, Springer, New York, 2005. [45] Simons, S. The Hahn-Banach-Lagrange theorem, Optimization 56(1-2) (2007) 149– 169. [46] Simons, S. From Hahn-Banach to monotonicity. Second edition, Lecture Notes in Mathematics 1693, xiv+244pp., Springer, New York, 2008. [47] Takahashi, W. Fixed point, minimax, and Hahn-Banach theorems, Proc. Symp. Pure Math., Amer. Math. Soc. 45(2) (1986) 419–427. [48] Werner, D. A proof of the Markov-Kakutani fixed point theorem via the Hahn- Banach theorem, Extracta Mathematicae 8 (1992) 37-38.

KKM implies Hahn-Banach

Yıl 2019, Cilt: 2 Sayı: 1, 7 - 17, 30.04.2019

Öz

Our title means that the Knster-Kuratowski-Mazurkiewitz theorem in

1929 implies the Hahn-Banach theorem. This theorem originated from

Hahn in 1926 and Banach in 1929 is of basic importance in the

analysis of problems concerning the existence of continuous linear

functionals. Its consequences and applications cover hundreds of

papers. For a long period, some authors studied the relation of

results of the Hahn-Banach theorem and the Brouwer fixed point

theorem in 1910 (equivalently, the KKM theorem in 1929). In the

present article, we recall some history of such study, and show that

the Hahn-Banach theorem can be derived from the KKM theorem and not

conversely. Consequently, all consequences and applications of the

Hahn-Banach theorem belong to a partial realm of the KKM theory.

Kaynakça

  • [1] Banach, S. Sur les fonctionnelles lin´ eaires II. Studia Math. 1 (1929), 223–239. [2] Ben-El-Mechaiekh, H. Intersection theorems for closed convex sets and applications, Missouri J. Math. Sc. 27(1) (2015) 47–63. arXiv:1501.05813v1 [math.FA]. [3] Ben-El-Mechaiekh, H., Deguire, P. et Granas, A. Une alternative nonlineaire en analyse convexe et applications, C. R. Acad. Sci. Paris 295 (1982) 257–259. [4] Buskes, G. The Hahn-Banach Theorem surveyed, Rozprawy Matematyczne, Vol.No.327, 1993. [5] Dunford, N and Schwartz, J.T. Linear Operators, Part I: General Theory. Interscience Pub., New York, 1957. [6] Edwards, D.A. On inequalities involving functions on a convex set, Symposia Mathematica, Vol.XVI (Convegno sulla Topologia Insiemistica e Generale, INDAM, Roma, Marzo, 1973), pp.181–190. Academic Press, London, 1974. [7] Fan, K. Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z. 68 (1957) 205–216. [8] Fan, K. A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961) 305–310. [9] Granas, A. and Lassonde, M. Sur un principe g´ eom´ etrique en analyse convexe (French. English summary) [On a geometric principle in convex analysis], Studia Math. 101(1) (1991) 1–18. [10] Granas, A. and Lassonde, M. Some elementary general principles of convex analysis. Contributions dedicated to Ky Fan on the occasion of his 80th birthday, Topol. Methods Nonlinear Anal. 5(1) (1995), 23–37. [11] Granas, A. and Liu, F.C. Remark on a theorem of Ky Fan concerning systems of inequalities, Bull. Inst. Math. Acad. Sinica 11(4) (1983) 639–643. [12] Hahn, H. Uber lineare Gleichungssysteme in linearen Räumen, J. Reine Angew. Math. 157 (1926) 214–229. [13] Hirano, N., Komiya, H., and Takahashi, W. A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982) 333–340. [14] Horvath, C. Some of Sion’s heirs and relatives, J. Fixed Point Theory Appl. 16 (2014), 385–409. DOI 10.1007/s11784-015-0225-4 [15] Kakutani, S. Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. Tokyo, 14 (1938) 242–245. = Selected Papers, Vol.I, Ch.3, pp.144–147.Birkhäuser, 1986. [16] Kakutani, S. A proof of the Hahn-Banach theorem via a fixed point theorem, Selected Papers, Vol.I, Ch.3, pp.154–158. Birkh¨ auser, 1986. [17] Kelley, J.L., Namioka, I. and coauthors Linear Topological Spaces, D. Van Nostrand Co., Inc., Princeton-Toronto-London-Melbourne, 1963. [18] König, H. On certain applications of the Hahn-Banach and minimax theorems, Arch. Math. 21 (1970) 583–591. [19] Lassonde, M. Hahn-Banach theorems for convex functions, Minimax Theory and Applications (B. Ricceri and S. Simons, eds.), pp.135–145, Kluwer Academic Pub., Dortrecht / Boston / London, 1998. [20] Narici, L. and Beckenstein, B.E. The Hahn-Banach theorem: the life and times, Top. Appl. 77 (1997) 193–211. [21] Park, S. Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187–222. [22] Park, S. The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042. [23] Park, S. A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132. [24] Park, S. A unification of generalized Fan-Browder type alternatives, J. Nonlinear Convex Anal. 17(1) (2016) 1–15. [25] Park, S. Theory of Abstract Convex Spaces, Nat. Acad. Sci., Republic of Korea, 410pp., 2017. [26] Park, S. A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017) 1–51. [27] Park, S. A panoramic view of the realm of Ky Fan’s 1952 lemma, to appear in Proc. NACA2017. [28] Park, S. Contributions of Andrzej Granas to the KKM theory, Nonlinear Analysis Forum 23 (2018) 1–16 [29] Park, S. The Hahn-Banach type or the KKM type? J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 58(1) (2018) 1–33. [30] Park, S. Variational relations in abstract convex spaces, Res. Fixed Point Theory Appl. vol.2018. Article ID 2018014, 08 pages. [31] Park, S. A panoramic view of the KKM theory on abstract convex spaces, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 57(2) (2018) 1–46. [32] Park, S. Various examples of the KKM spaces, Presented at IWNAO2018. [33] Park, S. Applications of convex-valued KKM maps, to appear in Proc. RIMS2018. [34] Park, S. Various variational relation problems in abstract convex spaces, Advances in Nonlinear Variational Inequalities 22 (2019) 1–13. [35] Park, S. and Jeong, K.S. Fixed point and non-retract theorems – Classical circular tours, Taiwan. J. Math. 5 (2001), 97–108. [36] Rudin, W. Functional Analysis, McGraw-Hill, 1973. [37] Simons, S. Minimal sublinear functionals, Studia Math. 37 (1970) 37–56. [38] Simons, S. Variational inequalities via the Hahn-Banach theorem, Arch. Math. 31 (1978) 482–490. [39] Simons, S. Minimax and variational inequalities. Are they of fixed point or Hahn- Banach type? Game Theory and Mathematical Economics, pp.379–387. North Holland, 1981. [40] Simons, S. Remark on: Remark on a theorem of Ky Fan concerning systems of inequalities[Bull. Inst. Math. Acad. Sinica 11 (1983), no.4, 639–643] by A. Granas and F.C. Liu, Bull. Inst. Math. Acad. Sinica 13(3) (1985), 279–282. [41] Simons, S. Two-function minimax theorems and variational inequalities for func- tions on compact and noncompact sets, with some comments on fixed-point theorems, Proc. Symp. Pure Math., Amer. Math. Soc. 45(2) (1986) 377–392. [42] Simons, S. Are minimax theorems and variational inequalities of Hahn-Banach or Brouwer type? Proc. Conf. on Optimization and Convex Analysis (Oxford, MS, 1989), No.6, 8pp., Univ. Mississippi, University, MS. 1989. [43] Simons, S. A new version of the Hahn-Banach theorem, Arch. Math. 80 (2003) 630–646. [44] Simons, S. Hahn-Banach theorems and maximal monotonicity, Variational Analysis and Applications, pp.1049–1083, Nonconvex Optim. Appl. 79, Springer, New York, 2005. [45] Simons, S. The Hahn-Banach-Lagrange theorem, Optimization 56(1-2) (2007) 149– 169. [46] Simons, S. From Hahn-Banach to monotonicity. Second edition, Lecture Notes in Mathematics 1693, xiv+244pp., Springer, New York, 2008. [47] Takahashi, W. Fixed point, minimax, and Hahn-Banach theorems, Proc. Symp. Pure Math., Amer. Math. Soc. 45(2) (1986) 419–427. [48] Werner, D. A proof of the Markov-Kakutani fixed point theorem via the Hahn- Banach theorem, Extracta Mathematicae 8 (1992) 37-38.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Sehie Park Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Park, S. (2019). KKM implies Hahn-Banach. Results in Nonlinear Analysis, 2(1), 7-17.
AMA Park S. KKM implies Hahn-Banach. RNA. Nisan 2019;2(1):7-17.
Chicago Park, Sehie. “KKM Implies Hahn-Banach”. Results in Nonlinear Analysis 2, sy. 1 (Nisan 2019): 7-17.
EndNote Park S (01 Nisan 2019) KKM implies Hahn-Banach. Results in Nonlinear Analysis 2 1 7–17.
IEEE S. Park, “KKM implies Hahn-Banach”, RNA, c. 2, sy. 1, ss. 7–17, 2019.
ISNAD Park, Sehie. “KKM Implies Hahn-Banach”. Results in Nonlinear Analysis 2/1 (Nisan 2019), 7-17.
JAMA Park S. KKM implies Hahn-Banach. RNA. 2019;2:7–17.
MLA Park, Sehie. “KKM Implies Hahn-Banach”. Results in Nonlinear Analysis, c. 2, sy. 1, 2019, ss. 7-17.
Vancouver Park S. KKM implies Hahn-Banach. RNA. 2019;2(1):7-17.