Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 990 - 999, 20.10.2022
https://doi.org/10.16984/saufenbilder.1089304

Öz

Kaynakça

  • [1] S. Thomas, S. Gopi, A. Amalraj, Biopolymers and their industrial applications from plant, animal, and marine sources, to Functional Products, 1st ed. Elsevier, 2020.
  • [2] M. A. Taemeh, A. Shiravandi, M. A. Korayem and H. Daemi, “Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers,” Carbohydrate Polymers, vol. 228, 115419, 2020.
  • [3] I. P. S. Fernando, W. W. Lee, E. J. Han, G. Ahna, “Alginate-based nanomaterials: Fabrication techniques, properties, and applications,” Chemical Engineering Journal, vol. 391, 123823, 2020.
  • [4] Grand View Research, Inc., Alginate Market Size, Share & Trends Analysis Report By Type (High M, High G), By Product (Sodium, Propylene Glycol), By Application (Pharmaceutical, Industrial), By Region, And Segment Forecasts, 2021-2028, https://www.grandviewresearch.com/industry-analysis/alginate-market (accessed on 16 March 2022).
  • [5] S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co., Singapore, 2005.
  • [6] W. Xu, R. Shen, Y. Yan, J. Gao, “Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 65, pp 428-438, 2017.
  • [7] M. A. Teixeira, M. T. P. Amorim, H. P. Felgueiras, “Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications,” Polymers, 12, 7, 2020.
  • [8] A. Pakolpakçıl, Z. Draczynski, “Preparation and characterization of the advanced alginate-based nanofibrous nonwoven using EDC/NHS coupling agent by electrospinning,” The Journal of the Textile Institute, vol. 113, pp. 1908-1916, 2021.
  • [9] S. Amjadi, H. Almasi, M.Ghorbani, S. Ramazani, “Preparation and characterization of TiO2NPs and betanin loaded zein/ sodium alginate nanofibers,” Food Package and Shelf Life, vol. 24, 100504, 2020.
  • [10] M. Wang, X. Li, T. Zhang, L. Deng, P. Li, X. Wang, B. S. Hsiao, “Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 558, pp. 228-241, 2018.
  • [11] Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, “Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue,” Carbohydrate Polymers, vol. 205, pp. 125-134, 2019.
  • [12] T. C. Mokhena, N. V. Jacobs, A. S. Luyt, “Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment,” Express Polymer Letters, vol. 11, pp. 652–663, 2017.
  • [13] T. C. Mokhena, N. V. Jacobs, A. S. Luyt, “Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification,” Cellulose, vol. 25, pp. 417–427, 2018.
  • [14] L. Tan, Z. Li, R. Shi, F. Quan, B. Wang, X. Ma, Q. Ji, X. Tian, Y. Xia, “Preparation and properties of an alginate-based fiber separator for lithium-ıon batteries,” ACS Applied Materials and Interfaces, vol. 12, pp. 38175–38182, 2020.
  • [15] A. Pakolpakçıl, B. Osman, G. Göktalay, E. T. Özer, Y. Şahan, B. Becerir, E. Karaca, “Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins,” Journal of Polymer Research, vol. 28, 50, 2021.
  • [16] A. Pakolpakçıl, Z. Draczynski, “Green approach to develop bee pollen-loaded alginate based nanofibrous mat,” Materials, vol. 14, 2775, 2021.
  • [17] K. R. Aadil, A. Nathani, C. S. Sharma, N. Lenka, P. Gupta, “Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications,” Materials Technology, vol. 33, pp. 507-512, 2018.
  • [18] G. Ma, D. Fang, Y. Liu, X. Zhu, J. Nie, “Electrospun sodium alginate / poly (ethylene oxide) core –shell nanofibers scaffolds potential for tissue engineering applications,” Carbohydrate Polymers, vol. 87, pp. 737-743, 2012.
  • [19] N. Reddy, R. Reddy, Q. Jiang, “Crosslinking biopolymers for biomedical applications,” Trends in Biotechnology, vol. 33, pp. 362-369, 2015.
  • [20] K. Pal, A. T. Paulson, D. Rousseau, “14-Biopolymers in Controlled-Release Delivery Systems” Handbook of Biopolymers and Biodegradable Plastics, S. Ebnesajjad, Eds. William Andrew Publishing, 2013, pp. 329-363.
  • [21] E. Yang, X. Qin, S. Wang, “Electrospun crosslinked polyvinyl alcohol membrane,” Materials Letters, vol. 62, pp. 3555-3557, 2008.
  • [22] G. Acik, “A comprehensive study on electrospinning of poly (vinyl alcohol): effects of the TCD, applied voltage, flow rate, and solution concentration,” Journal of the Turkish Chemical Society Section A: Chemistry, vol. 7, pp. 609-616, 2020.
  • [23] I. Gurol, C. Altinkok, E. Agel, C. Tasaltin, M. Durmus, G. Acik, “Phthalocyanine functionalized poly(vinyl alcohol)s via CuAAC click chemistry and their antibacterial properties,” Journal of Coatings Technology and Research, vol. 17, pp. 1587–1596, 2020.
  • [24] I. Migneault, C. Dartiguenave, M. J. Bertrand, K. C. Waldron “Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking” BioTechniques, vol. 37, pp. 790-802, 2004.
  • [25] R. V. Kulkarni, V. Sreedhar, S. Mutalik, C. M. Setty, B. Sa, “Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin,” International Journal of Biological Macromolecules, vol. 47, pp. 520-527, 2010.
  • [26] K. J. Kim, S. B. Lee, N. W. Han, “Effects of the degree of crosslinking on properties of poly(vinyl alcohol) membranes”, Polymer Journal, vol. 25, pp. 1295–1302, 1993.
  • [27] S. Mansur, M. S. Carolina, A. N. Souza, A. A. P. Mansur, “FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde,” Materials Science and Engineering C, vol. 28, pp. 539-548, 2008.
  • [28] K. C. S. Figueiredo, T. L. M. Alves, C. P. Borges, “Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions,” Journal of Applied Polymer Science, vol. 111, pp. 3074–3080, 2009.
  • [29] A. L. Ahmad, N. M. Yusuf, B. S. Ooi, “Preparation and modification of poly (vinyl) alcohol membrane: Effect of crosslinking time towards its morphology,” Desalination, vol. 287, pp. 35–40, 2012.
  • [30] X. Qin, G. Dou, G. Jiang and S. Zhang, “Characterization of poly(vinyl alcohol) nanofiber mats cross-linked with glutaraldehyde,” Journal of Industrial Textiles, vol. 43, pp. 34–44, 2012.
  • [31] F. S. Matty, M. T. Sultan, A. K. Amine, “Swelling Behavior of Cross-link PVA with Glutaraldehyde”, Ibn Al-Haitham Journal for Pure and Applied Sciences, vol. 28, no. 2, pp. 136-146, 2015.
  • [32] L. R. Shivakumara, D. Thippaiah, “Synthesis and swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels,” Turkish Journal Pharmaceutical Sciences, vol. 16, pp.252-260, 2019.
  • [33] R. V. Gadhave, P. A. Mahanwar, P. T. Gadekar, “Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends,” Designed Monomers and Polymers, vol. 22, pp. 164-170, 2019.
  • [34] B. H. Musa, N. J. Hameed, “Effect of crosslinking agent (glutaraldehyde) on the mechanical properties of (PVA/Starch) blend and (PVA/PEG) binary blend films,” Journal of Physics: Conference Series, 1795, 012064, 2021.
  • [35] M. Nagamadhu, S. B. Kivade, “Effect of multifrequency, boundary conditions of Polyvinyl Alcohol (PVA) crosslinked with Glutaraldehyde (GA) using dynamic mechanical analyzer,” Advances in Materials and Processing Technologies, 2021.
  • [36] Y. Elmogahzy, R. Farag, “7- Tensile properties of cotton fibers: Importance, research, and limitations” In The Textile Institute Book Series, Handbook of Properties of Textile and Technical Fibres, A. R. Bunsell Eds. (Second Edition), Cambridege: Woodhead Publishing, 2018, pp. 223-273.
  • [37] E. Campos, P. Coimbra, M. H. Gil, “An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles,” Polymer Bulletin, vol. 70, pp. 549–561, 2013.
  • [38] T. Zhao, L. Jiang, “Contact angle measurement of natural materials,” Colloids and Surfaces B: Biointerfaces, vol. 161, pp. 324-330, 2018.
  • [39] M. Miraftab, A. N. Saifullah, A. Çay, “Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: Comparative study on methanol and heat-based crosslinking,” Journal of Materials Science, vol. 50, pp. 1943–1957, 2015.

Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat

Yıl 2022, , 990 - 999, 20.10.2022
https://doi.org/10.16984/saufenbilder.1089304

Öz

Electrospun alginate-based materials are used in a wide range of applications, including wound dressings, tissue engineering, batteries, water treatment, bioremediation, and food packaging. However, they have low resistance to water. Crosslinking is usually used to enhance the mechanical properties of water-soluble polymers. Process parameters also play a key role in the crosslinking process. In this study, materials from sodium alginate (NaAlg) and poly (vinyl alcohol) (PVA) were prepared using the electrospinning method. To investigate the effect of the process parameters on the mechanical properties of the materials, different concentrations (1.25, 2.5 and 5 v %) and different application times (10 min, 60 min and 24 h) of the crosslinking agent were used. The wettability and mechanical properties of the electrospun mats were evaluated using a water contact angle device and a tensile strength tester, respectively. The maximum tensile strength was measured at 7 MPa which is the sample treated at 5% glutaraldehyde (GA) concentration and 60 min of application time. The sample treated with 2.5% GA concentration and 60 min of treatment time had the highest measured elongation of 11.5%. The sample treated with 2.5% GA concentration and for 10 min had the lowest water contact angle, which was measured at 27.5°. The intended usage of the materials should be considered, as the concentration of the crosslinking process and duration might affect the water-soluble polymers' mechanical and wetting properties.

Kaynakça

  • [1] S. Thomas, S. Gopi, A. Amalraj, Biopolymers and their industrial applications from plant, animal, and marine sources, to Functional Products, 1st ed. Elsevier, 2020.
  • [2] M. A. Taemeh, A. Shiravandi, M. A. Korayem and H. Daemi, “Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers,” Carbohydrate Polymers, vol. 228, 115419, 2020.
  • [3] I. P. S. Fernando, W. W. Lee, E. J. Han, G. Ahna, “Alginate-based nanomaterials: Fabrication techniques, properties, and applications,” Chemical Engineering Journal, vol. 391, 123823, 2020.
  • [4] Grand View Research, Inc., Alginate Market Size, Share & Trends Analysis Report By Type (High M, High G), By Product (Sodium, Propylene Glycol), By Application (Pharmaceutical, Industrial), By Region, And Segment Forecasts, 2021-2028, https://www.grandviewresearch.com/industry-analysis/alginate-market (accessed on 16 March 2022).
  • [5] S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co., Singapore, 2005.
  • [6] W. Xu, R. Shen, Y. Yan, J. Gao, “Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 65, pp 428-438, 2017.
  • [7] M. A. Teixeira, M. T. P. Amorim, H. P. Felgueiras, “Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications,” Polymers, 12, 7, 2020.
  • [8] A. Pakolpakçıl, Z. Draczynski, “Preparation and characterization of the advanced alginate-based nanofibrous nonwoven using EDC/NHS coupling agent by electrospinning,” The Journal of the Textile Institute, vol. 113, pp. 1908-1916, 2021.
  • [9] S. Amjadi, H. Almasi, M.Ghorbani, S. Ramazani, “Preparation and characterization of TiO2NPs and betanin loaded zein/ sodium alginate nanofibers,” Food Package and Shelf Life, vol. 24, 100504, 2020.
  • [10] M. Wang, X. Li, T. Zhang, L. Deng, P. Li, X. Wang, B. S. Hsiao, “Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 558, pp. 228-241, 2018.
  • [11] Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, “Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue,” Carbohydrate Polymers, vol. 205, pp. 125-134, 2019.
  • [12] T. C. Mokhena, N. V. Jacobs, A. S. Luyt, “Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment,” Express Polymer Letters, vol. 11, pp. 652–663, 2017.
  • [13] T. C. Mokhena, N. V. Jacobs, A. S. Luyt, “Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification,” Cellulose, vol. 25, pp. 417–427, 2018.
  • [14] L. Tan, Z. Li, R. Shi, F. Quan, B. Wang, X. Ma, Q. Ji, X. Tian, Y. Xia, “Preparation and properties of an alginate-based fiber separator for lithium-ıon batteries,” ACS Applied Materials and Interfaces, vol. 12, pp. 38175–38182, 2020.
  • [15] A. Pakolpakçıl, B. Osman, G. Göktalay, E. T. Özer, Y. Şahan, B. Becerir, E. Karaca, “Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins,” Journal of Polymer Research, vol. 28, 50, 2021.
  • [16] A. Pakolpakçıl, Z. Draczynski, “Green approach to develop bee pollen-loaded alginate based nanofibrous mat,” Materials, vol. 14, 2775, 2021.
  • [17] K. R. Aadil, A. Nathani, C. S. Sharma, N. Lenka, P. Gupta, “Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications,” Materials Technology, vol. 33, pp. 507-512, 2018.
  • [18] G. Ma, D. Fang, Y. Liu, X. Zhu, J. Nie, “Electrospun sodium alginate / poly (ethylene oxide) core –shell nanofibers scaffolds potential for tissue engineering applications,” Carbohydrate Polymers, vol. 87, pp. 737-743, 2012.
  • [19] N. Reddy, R. Reddy, Q. Jiang, “Crosslinking biopolymers for biomedical applications,” Trends in Biotechnology, vol. 33, pp. 362-369, 2015.
  • [20] K. Pal, A. T. Paulson, D. Rousseau, “14-Biopolymers in Controlled-Release Delivery Systems” Handbook of Biopolymers and Biodegradable Plastics, S. Ebnesajjad, Eds. William Andrew Publishing, 2013, pp. 329-363.
  • [21] E. Yang, X. Qin, S. Wang, “Electrospun crosslinked polyvinyl alcohol membrane,” Materials Letters, vol. 62, pp. 3555-3557, 2008.
  • [22] G. Acik, “A comprehensive study on electrospinning of poly (vinyl alcohol): effects of the TCD, applied voltage, flow rate, and solution concentration,” Journal of the Turkish Chemical Society Section A: Chemistry, vol. 7, pp. 609-616, 2020.
  • [23] I. Gurol, C. Altinkok, E. Agel, C. Tasaltin, M. Durmus, G. Acik, “Phthalocyanine functionalized poly(vinyl alcohol)s via CuAAC click chemistry and their antibacterial properties,” Journal of Coatings Technology and Research, vol. 17, pp. 1587–1596, 2020.
  • [24] I. Migneault, C. Dartiguenave, M. J. Bertrand, K. C. Waldron “Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking” BioTechniques, vol. 37, pp. 790-802, 2004.
  • [25] R. V. Kulkarni, V. Sreedhar, S. Mutalik, C. M. Setty, B. Sa, “Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin,” International Journal of Biological Macromolecules, vol. 47, pp. 520-527, 2010.
  • [26] K. J. Kim, S. B. Lee, N. W. Han, “Effects of the degree of crosslinking on properties of poly(vinyl alcohol) membranes”, Polymer Journal, vol. 25, pp. 1295–1302, 1993.
  • [27] S. Mansur, M. S. Carolina, A. N. Souza, A. A. P. Mansur, “FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde,” Materials Science and Engineering C, vol. 28, pp. 539-548, 2008.
  • [28] K. C. S. Figueiredo, T. L. M. Alves, C. P. Borges, “Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions,” Journal of Applied Polymer Science, vol. 111, pp. 3074–3080, 2009.
  • [29] A. L. Ahmad, N. M. Yusuf, B. S. Ooi, “Preparation and modification of poly (vinyl) alcohol membrane: Effect of crosslinking time towards its morphology,” Desalination, vol. 287, pp. 35–40, 2012.
  • [30] X. Qin, G. Dou, G. Jiang and S. Zhang, “Characterization of poly(vinyl alcohol) nanofiber mats cross-linked with glutaraldehyde,” Journal of Industrial Textiles, vol. 43, pp. 34–44, 2012.
  • [31] F. S. Matty, M. T. Sultan, A. K. Amine, “Swelling Behavior of Cross-link PVA with Glutaraldehyde”, Ibn Al-Haitham Journal for Pure and Applied Sciences, vol. 28, no. 2, pp. 136-146, 2015.
  • [32] L. R. Shivakumara, D. Thippaiah, “Synthesis and swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels,” Turkish Journal Pharmaceutical Sciences, vol. 16, pp.252-260, 2019.
  • [33] R. V. Gadhave, P. A. Mahanwar, P. T. Gadekar, “Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends,” Designed Monomers and Polymers, vol. 22, pp. 164-170, 2019.
  • [34] B. H. Musa, N. J. Hameed, “Effect of crosslinking agent (glutaraldehyde) on the mechanical properties of (PVA/Starch) blend and (PVA/PEG) binary blend films,” Journal of Physics: Conference Series, 1795, 012064, 2021.
  • [35] M. Nagamadhu, S. B. Kivade, “Effect of multifrequency, boundary conditions of Polyvinyl Alcohol (PVA) crosslinked with Glutaraldehyde (GA) using dynamic mechanical analyzer,” Advances in Materials and Processing Technologies, 2021.
  • [36] Y. Elmogahzy, R. Farag, “7- Tensile properties of cotton fibers: Importance, research, and limitations” In The Textile Institute Book Series, Handbook of Properties of Textile and Technical Fibres, A. R. Bunsell Eds. (Second Edition), Cambridege: Woodhead Publishing, 2018, pp. 223-273.
  • [37] E. Campos, P. Coimbra, M. H. Gil, “An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles,” Polymer Bulletin, vol. 70, pp. 549–561, 2013.
  • [38] T. Zhao, L. Jiang, “Contact angle measurement of natural materials,” Colloids and Surfaces B: Biointerfaces, vol. 161, pp. 324-330, 2018.
  • [39] M. Miraftab, A. N. Saifullah, A. Çay, “Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: Comparative study on methanol and heat-based crosslinking,” Journal of Materials Science, vol. 50, pp. 1943–1957, 2015.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ayben Pakolpakçıl 0000-0002-6981-4980

Yayımlanma Tarihi 20 Ekim 2022
Gönderilme Tarihi 17 Mart 2022
Kabul Tarihi 28 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Pakolpakçıl, A. (2022). Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat. Sakarya University Journal of Science, 26(5), 990-999. https://doi.org/10.16984/saufenbilder.1089304
AMA Pakolpakçıl A. Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat. SAUJS. Ekim 2022;26(5):990-999. doi:10.16984/saufenbilder.1089304
Chicago Pakolpakçıl, Ayben. “Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat”. Sakarya University Journal of Science 26, sy. 5 (Ekim 2022): 990-99. https://doi.org/10.16984/saufenbilder.1089304.
EndNote Pakolpakçıl A (01 Ekim 2022) Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat. Sakarya University Journal of Science 26 5 990–999.
IEEE A. Pakolpakçıl, “Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat”, SAUJS, c. 26, sy. 5, ss. 990–999, 2022, doi: 10.16984/saufenbilder.1089304.
ISNAD Pakolpakçıl, Ayben. “Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat”. Sakarya University Journal of Science 26/5 (Ekim 2022), 990-999. https://doi.org/10.16984/saufenbilder.1089304.
JAMA Pakolpakçıl A. Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat. SAUJS. 2022;26:990–999.
MLA Pakolpakçıl, Ayben. “Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat”. Sakarya University Journal of Science, c. 26, sy. 5, 2022, ss. 990-9, doi:10.16984/saufenbilder.1089304.
Vancouver Pakolpakçıl A. Effect of Glutaraldehyde Crosslinking Parameters on Mechanical and Wetting Properties of PVA/NaAlg Electrospun Mat. SAUJS. 2022;26(5):990-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.