Yıl 2022,
, 967 - 973, 20.10.2022
Emre Tabar
,
Elif Kemah
,
Hakan Yakut
,
Gamze Hoşgör
Kaynakça
- [1] A. Bohr, B. Mottelson, “Nuclear Structure”, Vol. 1, 2, Benjamin, 1975.
- [2] N. Benczer-Koller, G. Lenner F, R. Tanczyn, A. Pakou, G. Kumbartzki, A. Pique, “Magnetic moments of low-lying states in medium weight odd nuclei” Hyperfine Interactions vol. 43, pp. 457-467, 1988.
- [3] R. Neugart, G. Neyens, “Nuclear Moments”, Lecture Notes in Physics, vol. 700, 135–189, Springer-Verlag Berlin Heidelberg, 2006.
- [4] N. J. Stone, “Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments”, IAEA Vienna Report No. INDC(NDS)-0658, 2014.
- [5] I. L. Lamm, ‘‘Shell-model calculations on deformed nuclei,’’ Nuclear Physics A, vol. 125, pp. 504-530, 1969.
- [6] R. R. Chasman, I. Ahmad, A. M. Friedman, J.R. Erskine, ‘‘Survey of single-particle states in the mass region A>228’’ Reviews of Modern Physics, vol. 49, no 4, pp. 833-891, 1977.
- [7] A. K. Jain, R. K. Sheline, P. C. Sood, K. Jain, ‘‘Intrinsic states of deformed odd-A nuclei in the mass regions (151≤A≤193) and (A≥221)’’, Reviews of Modern Physics, vol. 62, no 2, pp. 293-509, 1990.
- [8] L. Bonneau, J. Le Bloas, P.Quentin, ‘‘Effects Of Core Polarization And Pairing Correlations On Some Ground-State Properties Of Deformed Odd-Mass Nuclei Within The Higher Tamm–Dancoff Approach,’’ International Journal of Modern Physics E, vol. 20, no 2, pp. 252–258, 2011.
- [9] L. Bonneau, P. Quentin, N. Minkov, J. Bartel, J. Le Bloas, ‘‘Effects of Core Polarization and Pairing Correlations on Magnetic Moments of Deformed Odd Nuclei’’, Nuclear Theory, vol. 31, pp. 164-174, 2012.
- [10] L. Bonneau, N. Minkov, Dao Duy Duc, P. Quentin, J. Bartel, ‘‘Effect of core polarization on magnetic dipole moments in deformed odd-mass nuclei,’’ Physical Review C, vol. 91, p. 054307, 2015.
- [11] A.A. Kuliev, N.I. Pyatov, ‘‘Magnetic Dipole Interactions in Deformed Nuclei, Soviet Journal of Nuclear Physics’’, Soviet Journal of Nuclear Physics-Ussr, pp. 185-189, 1969.
- [12] Z. Bochnacki, S. Ogaza, ‘‘Spin polarization effect and the magnetic moments of odd-mass deformed nuclei’’, Nuclear Physics, vol. 69, no 1, pp. 186-192, 1965.
- [13] J. De Boer, J.D. Rogers, ‘‘Concerning the magnetic properties of deformed nuclei in region 153 ≤ A ≤ 187’’, Physics Letters, vol. 3, no 6, pp. 304–306, 1963.
- [14] H. Yakut, E. Guliyev, M. Guner, E. Tabar, Z. Yildirim, ‘‘QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157−167Er,’’ Nuclear Physics A, vol. 888, pp. 23-33, 2012.
- [15] H. Yakut, E. Tabar, A. A. Kuilev, Z. Zengnerler, P. Kaplan, ‘‘Ground state magnetic properties of odd neutron Dy isotopes’’, International Journal of Modern Physics E, vol. 22, no 10, p. 1350076, 2013.
- [16] H. Yakut, E. Tabar, A. A. Kuliev, E. Guliyev, ‘‘The ground-state magnetic moments of odd-mass Hf isotopes’,’ Central European Journal of Physics, vol. 12, no 12, pp. 843-850, 2014.
- [17] H. Yakut, E. Tabar, A. A. Kuliev, E. Guliyev, H. Quliyev, G. Hoşgör, “Magnetic Moments and g factors in odd-mass Ho isotopes’’, Chinese Physics C, vol. 41, no 7, p. 074101, 2017.
- [18] V. G. Soloviev, “Theory of Complex Nuclei” Pergamon Press, 1976.
- [19] U. Atzmony, S. Ofer, ‘‘Mössbauer-Effect Studies of the 97-keV Level of Eu153’’, Physical Review, vol. 145, no 3, pp. 915-917, 1966.
- [20] O. Prior, F. Boehm, S.G. Nilsson, ‘‘Collective gyromagnetic ratios of deformed nuclei’’ Nuclear Physics A, vol. 110, pp. 257-272, 1968.
- [21] J. Dudek, T. Werner, ‘‘New parameters of the deformed Woods-Saxon potential for A=110-210 nuclei,’’ Journal of Physics G: Nuclear and Particle Physics, vol. 4, pp. 1543-1561, 1978.
- [22] S. Raman, C.W. Nestor Jr., P. Tikkanen, Atomic Data and Nuclear Data Tables, vol. 78, pp. 1-128, 2001.
- [23] P. Moller, W. D. M. J. R. Nix, W. J. Swiateck, Atomic Data Nuclear Data Tables, vol. 59, pp. 185-381, 1995
- [24] V.G. Soloviev, S.I. Fedotov, ‘‘Nonrotational States in Odd-Z Deformed Nuclei with 153 < A < 177,’’ Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya, vol. 36, pp. 706-710, 1972.
First Theoretical Identification of the Magnetic Dipole Moment of the 97.43 keV State in 153Eu
Yıl 2022,
, 967 - 973, 20.10.2022
Emre Tabar
,
Elif Kemah
,
Hakan Yakut
,
Gamze Hoşgör
Öz
Two alternative values, +3.21±0.22 μ_N and-0.52±0.22 μ_N, for the magnetic dipole (M1) moment of the excited [532] 5/2- state at 97.43 keV in 153Eu were reported in the Mossbauer-effect study. The Quasiparticle Phonon Nuclear Model (QPNM) has been used to determine the correct value of the magnetic moment of this state. According to the QPNM calculations, the experimental 97.43 keV level is the [532] 5/2- Nilsson state occurring at 79 keV. The QPNM predicted the magnetic moment of this state to be +3.2162 μ_N, which agrees well with one of the experimental values, i.e., +3.21±0.22 μ_N. Therefore, the correct value for the magnetic moment of the 97.43 keV level of 153Eu is most probably +3.21±0.22 μ_N. The measured value (+3.4717±0.006 μ_N) of the magnetic moment of 5/2- ground-state, which is probably a [532] Nilsson state according to our QPNM calculations, supports our prediction.
Kaynakça
- [1] A. Bohr, B. Mottelson, “Nuclear Structure”, Vol. 1, 2, Benjamin, 1975.
- [2] N. Benczer-Koller, G. Lenner F, R. Tanczyn, A. Pakou, G. Kumbartzki, A. Pique, “Magnetic moments of low-lying states in medium weight odd nuclei” Hyperfine Interactions vol. 43, pp. 457-467, 1988.
- [3] R. Neugart, G. Neyens, “Nuclear Moments”, Lecture Notes in Physics, vol. 700, 135–189, Springer-Verlag Berlin Heidelberg, 2006.
- [4] N. J. Stone, “Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments”, IAEA Vienna Report No. INDC(NDS)-0658, 2014.
- [5] I. L. Lamm, ‘‘Shell-model calculations on deformed nuclei,’’ Nuclear Physics A, vol. 125, pp. 504-530, 1969.
- [6] R. R. Chasman, I. Ahmad, A. M. Friedman, J.R. Erskine, ‘‘Survey of single-particle states in the mass region A>228’’ Reviews of Modern Physics, vol. 49, no 4, pp. 833-891, 1977.
- [7] A. K. Jain, R. K. Sheline, P. C. Sood, K. Jain, ‘‘Intrinsic states of deformed odd-A nuclei in the mass regions (151≤A≤193) and (A≥221)’’, Reviews of Modern Physics, vol. 62, no 2, pp. 293-509, 1990.
- [8] L. Bonneau, J. Le Bloas, P.Quentin, ‘‘Effects Of Core Polarization And Pairing Correlations On Some Ground-State Properties Of Deformed Odd-Mass Nuclei Within The Higher Tamm–Dancoff Approach,’’ International Journal of Modern Physics E, vol. 20, no 2, pp. 252–258, 2011.
- [9] L. Bonneau, P. Quentin, N. Minkov, J. Bartel, J. Le Bloas, ‘‘Effects of Core Polarization and Pairing Correlations on Magnetic Moments of Deformed Odd Nuclei’’, Nuclear Theory, vol. 31, pp. 164-174, 2012.
- [10] L. Bonneau, N. Minkov, Dao Duy Duc, P. Quentin, J. Bartel, ‘‘Effect of core polarization on magnetic dipole moments in deformed odd-mass nuclei,’’ Physical Review C, vol. 91, p. 054307, 2015.
- [11] A.A. Kuliev, N.I. Pyatov, ‘‘Magnetic Dipole Interactions in Deformed Nuclei, Soviet Journal of Nuclear Physics’’, Soviet Journal of Nuclear Physics-Ussr, pp. 185-189, 1969.
- [12] Z. Bochnacki, S. Ogaza, ‘‘Spin polarization effect and the magnetic moments of odd-mass deformed nuclei’’, Nuclear Physics, vol. 69, no 1, pp. 186-192, 1965.
- [13] J. De Boer, J.D. Rogers, ‘‘Concerning the magnetic properties of deformed nuclei in region 153 ≤ A ≤ 187’’, Physics Letters, vol. 3, no 6, pp. 304–306, 1963.
- [14] H. Yakut, E. Guliyev, M. Guner, E. Tabar, Z. Yildirim, ‘‘QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157−167Er,’’ Nuclear Physics A, vol. 888, pp. 23-33, 2012.
- [15] H. Yakut, E. Tabar, A. A. Kuilev, Z. Zengnerler, P. Kaplan, ‘‘Ground state magnetic properties of odd neutron Dy isotopes’’, International Journal of Modern Physics E, vol. 22, no 10, p. 1350076, 2013.
- [16] H. Yakut, E. Tabar, A. A. Kuliev, E. Guliyev, ‘‘The ground-state magnetic moments of odd-mass Hf isotopes’,’ Central European Journal of Physics, vol. 12, no 12, pp. 843-850, 2014.
- [17] H. Yakut, E. Tabar, A. A. Kuliev, E. Guliyev, H. Quliyev, G. Hoşgör, “Magnetic Moments and g factors in odd-mass Ho isotopes’’, Chinese Physics C, vol. 41, no 7, p. 074101, 2017.
- [18] V. G. Soloviev, “Theory of Complex Nuclei” Pergamon Press, 1976.
- [19] U. Atzmony, S. Ofer, ‘‘Mössbauer-Effect Studies of the 97-keV Level of Eu153’’, Physical Review, vol. 145, no 3, pp. 915-917, 1966.
- [20] O. Prior, F. Boehm, S.G. Nilsson, ‘‘Collective gyromagnetic ratios of deformed nuclei’’ Nuclear Physics A, vol. 110, pp. 257-272, 1968.
- [21] J. Dudek, T. Werner, ‘‘New parameters of the deformed Woods-Saxon potential for A=110-210 nuclei,’’ Journal of Physics G: Nuclear and Particle Physics, vol. 4, pp. 1543-1561, 1978.
- [22] S. Raman, C.W. Nestor Jr., P. Tikkanen, Atomic Data and Nuclear Data Tables, vol. 78, pp. 1-128, 2001.
- [23] P. Moller, W. D. M. J. R. Nix, W. J. Swiateck, Atomic Data Nuclear Data Tables, vol. 59, pp. 185-381, 1995
- [24] V.G. Soloviev, S.I. Fedotov, ‘‘Nonrotational States in Odd-Z Deformed Nuclei with 153 < A < 177,’’ Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya, vol. 36, pp. 706-710, 1972.