Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 670 - 679, 30.06.2023
https://doi.org/10.16984/saufenbilder.1161702

Öz

Kaynakça

  • E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical Review, vol. 40, no. 5, pp. 749-759, 1932.
  • M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” Journal of the Optical Society of America A, vol. 3, no. 8, pp. 1227-1238, 1986.
  • S. B. Mehta, C. J. R. Sheppard, “Partially coherent microscope in phase space,” Journal of the Optical Society of America. A, Optics, image science, and vision, vol. 35, no. 8, pp. 1272-1282, 2018.
  • D. Dragoman, “Applications of the Wigner distribution function in signal processing,” EURASIP Journal on Advances in Signal Processing, vol. 10, pp. 1520–1534, 2005.
  • D. Mendlovic, Z. Zalevsky, H. M. Ozaktas, “Wigner-related phase spaces for signal processing and their optical implementation,” Journal of the Optical Society of America A; vol. 17, no. 12, pp. 2339-2354, 2000.
  • D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Applied Optics, vol. 33, no. 26, pp. 6188-6193, 1994.
  • K. A. Sharma, T. G. Brown, M. A. Alonso, “Phase-space approach to lensless measurements of optical field correlations,” Optics Express, vol. 24, no. 14, pp. 16099-16110, 2016.
  • A. Walther, “Radiometry and coherence,” Journal of the Optical Society of America, vol. 58, no. 9, pp. 1256-1259, 1968.
  • S. Sahin, M. Zhang, Y. Chen, Y. Cai, “Transmission of a polychromatic electromagnetic multi-Gaussian Schellmodel beam in an inhomogeneous gradient-index fiber,” Journal of the Optical Society of America A, vol. 35, no. 9, pp. 1604-1611, 2018.
  • O. Korotkova, L. C. Andrews, R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Optical Engineering, vol. 43, no. 2, pp. 330-341, 2004.
  • J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” Journal of the Optical Society of America A, vol. 19, no. 9, pp. 1794-1802, 2002.
  • E. Wolf, “Introduction to the Theory of Coherence and Polarization of Light,” 1st. Edition, Cambridge, UK: Cambridge University Press, 2007.
  • S. Sahin, “Generalized Stokes parameters in phase space,” Optics Letters, vol. 35, no. 10, pp. 1704-1706, 2010.
  • S. Cho, J. C. Petruccelli, M. A. Alonso, “Wigner functions for paraxial and nonparaxial fields,” Journal of Modern Optics, vol. 56, no. 17, pp. 1843-1852, 2009.
  • M. Testorf, B. Hennelly, J. Ojeda-Castaneda, “Phase-Space Optics: Fundamentals and Applications,” 1st. Edition, New York, US: The McGraw-Hill companies, 2010.
  • F. Gori, M. Santarsiero, R. Borghi, V. Ramirez-Sanchez, “Realizability condition for electromagnetic Schell-model sources,” Journal of the Optical Society of America A, vol. 25, no. 5, pp. 1016-1021, 2008.
  • H. Mao, Y. Chen, C. Liang, L. Chen, Y. Cai, S. A. Ponomarenko, “Self-steering partially coherent vector beams,” Optics Express; vol. 27, no. 10, pp. 14353-14368, 2019.
  • T. Ari, A. T. Friberg, “Phase-space methods for partially coherent wavefields,” in AIP Conference Proceedings, Ensenada, Mexico, 1980, pp. 313-331.
  • A. Wax, J. E. Thomas, “Optical heterodyne imaging and Wigner phase space distributions,” Optics Letters, vol. 21, no. 18, pp. 1427-1429, 1996.
  • A. C´amara, J. A. Rodrigo, T. Alieva, “Optical coherenscopy based on phase-space tomography,” Optics Express, vol. 21, no. 11, 13169-13183, 2013.

The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters

Yıl 2023, , 670 - 679, 30.06.2023
https://doi.org/10.16984/saufenbilder.1161702

Öz

Phase-space transforms describe spatial and angular information about light sources where one example is the Wigner functions in wave optics. Stokes parameters, on the other hand, supply information about the polarization of light beams. The generalized phase space Stokes parameters of 2D stochastic electromagnetic beams are already developed. In this article, the application of anisotropic light sources in generalized phase space Stokes parameters is theoretically investigated and numerically analyzed. There are several different ways of studying electromagnetic light beams depending on the spatial domain. But, most measure of the polarization of random light fields is carried out within the Stokes parameters context. In this account we study the electromagnetism, Stokes parameters, phase space, and the anisotropy properties of random light beams at once. We find here that when an anisotropy introduced in phase space then the cross terms of the Wigner matrix depart from the diagonal terms, which is not the same in configuration space. As a result, anisotropy has a different effect in Phase space, i.e. an anisotropic source introduces a phase and a variance change only in the cross terms of Wigner matrix. This is due to the use of anisotropy in the shifted kernel of Wigner transform.

Kaynakça

  • E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical Review, vol. 40, no. 5, pp. 749-759, 1932.
  • M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” Journal of the Optical Society of America A, vol. 3, no. 8, pp. 1227-1238, 1986.
  • S. B. Mehta, C. J. R. Sheppard, “Partially coherent microscope in phase space,” Journal of the Optical Society of America. A, Optics, image science, and vision, vol. 35, no. 8, pp. 1272-1282, 2018.
  • D. Dragoman, “Applications of the Wigner distribution function in signal processing,” EURASIP Journal on Advances in Signal Processing, vol. 10, pp. 1520–1534, 2005.
  • D. Mendlovic, Z. Zalevsky, H. M. Ozaktas, “Wigner-related phase spaces for signal processing and their optical implementation,” Journal of the Optical Society of America A; vol. 17, no. 12, pp. 2339-2354, 2000.
  • D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Applied Optics, vol. 33, no. 26, pp. 6188-6193, 1994.
  • K. A. Sharma, T. G. Brown, M. A. Alonso, “Phase-space approach to lensless measurements of optical field correlations,” Optics Express, vol. 24, no. 14, pp. 16099-16110, 2016.
  • A. Walther, “Radiometry and coherence,” Journal of the Optical Society of America, vol. 58, no. 9, pp. 1256-1259, 1968.
  • S. Sahin, M. Zhang, Y. Chen, Y. Cai, “Transmission of a polychromatic electromagnetic multi-Gaussian Schellmodel beam in an inhomogeneous gradient-index fiber,” Journal of the Optical Society of America A, vol. 35, no. 9, pp. 1604-1611, 2018.
  • O. Korotkova, L. C. Andrews, R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Optical Engineering, vol. 43, no. 2, pp. 330-341, 2004.
  • J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” Journal of the Optical Society of America A, vol. 19, no. 9, pp. 1794-1802, 2002.
  • E. Wolf, “Introduction to the Theory of Coherence and Polarization of Light,” 1st. Edition, Cambridge, UK: Cambridge University Press, 2007.
  • S. Sahin, “Generalized Stokes parameters in phase space,” Optics Letters, vol. 35, no. 10, pp. 1704-1706, 2010.
  • S. Cho, J. C. Petruccelli, M. A. Alonso, “Wigner functions for paraxial and nonparaxial fields,” Journal of Modern Optics, vol. 56, no. 17, pp. 1843-1852, 2009.
  • M. Testorf, B. Hennelly, J. Ojeda-Castaneda, “Phase-Space Optics: Fundamentals and Applications,” 1st. Edition, New York, US: The McGraw-Hill companies, 2010.
  • F. Gori, M. Santarsiero, R. Borghi, V. Ramirez-Sanchez, “Realizability condition for electromagnetic Schell-model sources,” Journal of the Optical Society of America A, vol. 25, no. 5, pp. 1016-1021, 2008.
  • H. Mao, Y. Chen, C. Liang, L. Chen, Y. Cai, S. A. Ponomarenko, “Self-steering partially coherent vector beams,” Optics Express; vol. 27, no. 10, pp. 14353-14368, 2019.
  • T. Ari, A. T. Friberg, “Phase-space methods for partially coherent wavefields,” in AIP Conference Proceedings, Ensenada, Mexico, 1980, pp. 313-331.
  • A. Wax, J. E. Thomas, “Optical heterodyne imaging and Wigner phase space distributions,” Optics Letters, vol. 21, no. 18, pp. 1427-1429, 1996.
  • A. C´amara, J. A. Rodrigo, T. Alieva, “Optical coherenscopy based on phase-space tomography,” Optics Express, vol. 21, no. 11, 13169-13183, 2013.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Serkan Şahin 0000-0002-5241-1632

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 13 Ağustos 2022
Kabul Tarihi 2 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şahin, S. (2023). The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. Sakarya University Journal of Science, 27(3), 670-679. https://doi.org/10.16984/saufenbilder.1161702
AMA Şahin S. The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. SAUJS. Haziran 2023;27(3):670-679. doi:10.16984/saufenbilder.1161702
Chicago Şahin, Serkan. “The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters”. Sakarya University Journal of Science 27, sy. 3 (Haziran 2023): 670-79. https://doi.org/10.16984/saufenbilder.1161702.
EndNote Şahin S (01 Haziran 2023) The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. Sakarya University Journal of Science 27 3 670–679.
IEEE S. Şahin, “The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters”, SAUJS, c. 27, sy. 3, ss. 670–679, 2023, doi: 10.16984/saufenbilder.1161702.
ISNAD Şahin, Serkan. “The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters”. Sakarya University Journal of Science 27/3 (Haziran 2023), 670-679. https://doi.org/10.16984/saufenbilder.1161702.
JAMA Şahin S. The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. SAUJS. 2023;27:670–679.
MLA Şahin, Serkan. “The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters”. Sakarya University Journal of Science, c. 27, sy. 3, 2023, ss. 670-9, doi:10.16984/saufenbilder.1161702.
Vancouver Şahin S. The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. SAUJS. 2023;27(3):670-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.