Araştırma Makalesi
BibTex RIS Kaynak Göster

The residual power series method for solving fractional Klein-Gordon equation

Yıl 2017, , 285 - 293, 01.06.2017
https://doi.org/10.16984/saufenbilder.283991

Öz

In this article, the residual power series method (RPSM) for solving fractional Klein-Gordon equations is introduced.
Residual power series algorithm gets Maclaurin expansion of the solution. The solutions of our equation are computed
in the form of rapidly convergent series with easily calculable components by using mathematica software package.
Reliability of the method is given with graphical consequences and series solutions. The found consequences show
that the method is a power and efficient method in determination of solution the time fractional Klein-Gordon
equations.
  

Kaynakça

  • [1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
  • [2] I.Podlubny, Fractional Differential Equation, Academic Press, San Diego, (1999).
  • [3] J.Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, (2007).
  • [4] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, (1993).
  • [5] D. Baleanu, K. Diethelm, E. Scalas, J. Truj llo, Fractional Calculus Models and Numerical Methods, Complexity,Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, (2012).
  • [6] J.S. Duan, R. Rach, D. Baleanu, A.M. Wazwaz, ‘’A review of the Adomian decomposition method and its applications to fractional differential equations’’, Commun. Frac. Calc., vol.3, pp.7-99, 2012.
  • [7] R. Mag n, X. Feng, D. Baleanu, ‘’Solving the Fractional Order Bloch Equation, Concepts in Magnetic Resonance’’, vol.34 no.A (1), pp.16-23, 2009.
  • [8] A. Kadem, D. Baleanu, ‘’Homotopy perturbation method for the coupled fractional Lotka-Volterra equations’’, Rom. J. Phys., no.56, pp.332-338, 2011.
  • [9] D. Baleanu, ‘’New Applications of Fractional Variational Principles’’, Reports on Mathematical Physics, vol.61, no.2, 199-206, 2008.
  • [10] R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, ‘’Anomalous diffusion expressed through fractional order differential operators in the Bloch--Torrey equation’’, Journal of Magnetic Resonance, vol.190, pp. 255-270, 2008
  • [11] O. Abu Arqub, ‘’Series solution of fuzzy differential equations under strongly generalized differentiability’’, Journal of Advanced Research in Applied Mathematics, no.5, pp. 31-52, 2013
  • [12] O. Abu Arqub, A El-Ajou, A. Bataineh, I. Hashim, ‘’A representation of the exact solution of generalized Lane Emden equations using a new analytical method’’, Abstract and Applied Analysis, pp. 1-10, 2013
  • [13] A. El-Ajou, O. Abu Arqub, Z. Al Zhour, S. Momani, ‘’New results on fractional power series: theories and applications’’, Entropy, vol.15, pp. 5305-5323. 2013
  • [14] O. Abu Arqub, A. El-Ajou, Z. Al Zhour, S. Momani, ‘’Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique’’, Entropy, vol.16, pp. 471-493. 2014.
  • [15] O. Abu Arqub, A. El-Ajou, S. Momani, ‘’Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations’’, Journal of Computational Physics, vol.293, pp.385-399, 2015
  • [16] A. El-Ajou, O. Abu Arqub, S. Momani, ‘’Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm’’, Journal of Computational Physics, vol.293, pp.81-95, 2015
  • [17] M. Alquran, K. Al-Khaled, J. Chattopadhyay, ‘’Analytical Solutions of Fractional Population Diffusion Model: Residual Power Series’’, Nonlinear Studies, vol.22, no.1, pp.31-39, 2015
  • [18] A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, A. Alsaedi, ‘’A novel expansion iterative method for solving linear partial differential equations of fractional order’’, Applied Mathematics and Computation, vol.257, vol.119-133, 2015
  • [19] A.K. Golmankhaneh, D. Baleanu, ‘’On nonlinear fractional Klein--Gordon equation’’, Sigal Process. Vol. 91, pp.446--451. 2011
  • [20] B. Lu, ‘’The first integral method for some time fractional differential equations’’, Journal of Mathematical Analysis and Applications, vol. 395, pp.684-693, 2012

Kesirli Klein-Gordon denklemi için residual power seri metodu

Yıl 2017, , 285 - 293, 01.06.2017
https://doi.org/10.16984/saufenbilder.283991

Öz

Bu makalede kesirli Klein-Gordon denklemlerinin çözümleri için Residual Power Seri metodu (RPSM) uygulanmıştır.
Residual Power Seri algoritması çözümün Maclaurin açılımını verir. Bu denklemlerin çözümleri, Mathematica
programı kullanılarak kolayca hesaplanan bileşenler ile hızlı yakınsak seriler formunda hesaplanmıştır. Metodun
güvenilirliği, seri çözümler ve grafik sonuçlar yardımıyla verilmiştir. Bulunan sonuçlar, kullandığımız metodun kesirli
Klein-Gordon denklemlerinin seri çözümlerinin belirlenmesinde güçlü ve etkili bir metot olduğunu göstermektedir.
  

Kaynakça

  • [1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
  • [2] I.Podlubny, Fractional Differential Equation, Academic Press, San Diego, (1999).
  • [3] J.Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, (2007).
  • [4] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, (1993).
  • [5] D. Baleanu, K. Diethelm, E. Scalas, J. Truj llo, Fractional Calculus Models and Numerical Methods, Complexity,Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, (2012).
  • [6] J.S. Duan, R. Rach, D. Baleanu, A.M. Wazwaz, ‘’A review of the Adomian decomposition method and its applications to fractional differential equations’’, Commun. Frac. Calc., vol.3, pp.7-99, 2012.
  • [7] R. Mag n, X. Feng, D. Baleanu, ‘’Solving the Fractional Order Bloch Equation, Concepts in Magnetic Resonance’’, vol.34 no.A (1), pp.16-23, 2009.
  • [8] A. Kadem, D. Baleanu, ‘’Homotopy perturbation method for the coupled fractional Lotka-Volterra equations’’, Rom. J. Phys., no.56, pp.332-338, 2011.
  • [9] D. Baleanu, ‘’New Applications of Fractional Variational Principles’’, Reports on Mathematical Physics, vol.61, no.2, 199-206, 2008.
  • [10] R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, ‘’Anomalous diffusion expressed through fractional order differential operators in the Bloch--Torrey equation’’, Journal of Magnetic Resonance, vol.190, pp. 255-270, 2008
  • [11] O. Abu Arqub, ‘’Series solution of fuzzy differential equations under strongly generalized differentiability’’, Journal of Advanced Research in Applied Mathematics, no.5, pp. 31-52, 2013
  • [12] O. Abu Arqub, A El-Ajou, A. Bataineh, I. Hashim, ‘’A representation of the exact solution of generalized Lane Emden equations using a new analytical method’’, Abstract and Applied Analysis, pp. 1-10, 2013
  • [13] A. El-Ajou, O. Abu Arqub, Z. Al Zhour, S. Momani, ‘’New results on fractional power series: theories and applications’’, Entropy, vol.15, pp. 5305-5323. 2013
  • [14] O. Abu Arqub, A. El-Ajou, Z. Al Zhour, S. Momani, ‘’Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique’’, Entropy, vol.16, pp. 471-493. 2014.
  • [15] O. Abu Arqub, A. El-Ajou, S. Momani, ‘’Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations’’, Journal of Computational Physics, vol.293, pp.385-399, 2015
  • [16] A. El-Ajou, O. Abu Arqub, S. Momani, ‘’Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm’’, Journal of Computational Physics, vol.293, pp.81-95, 2015
  • [17] M. Alquran, K. Al-Khaled, J. Chattopadhyay, ‘’Analytical Solutions of Fractional Population Diffusion Model: Residual Power Series’’, Nonlinear Studies, vol.22, no.1, pp.31-39, 2015
  • [18] A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, A. Alsaedi, ‘’A novel expansion iterative method for solving linear partial differential equations of fractional order’’, Applied Mathematics and Computation, vol.257, vol.119-133, 2015
  • [19] A.K. Golmankhaneh, D. Baleanu, ‘’On nonlinear fractional Klein--Gordon equation’’, Sigal Process. Vol. 91, pp.446--451. 2011
  • [20] B. Lu, ‘’The first integral method for some time fractional differential equations’’, Journal of Mathematical Analysis and Applications, vol. 395, pp.684-693, 2012
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Zeliha Körpınar Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Gönderilme Tarihi 4 Ağustos 2016
Kabul Tarihi 15 Ekim 2016
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Körpınar, Z. (2017). The residual power series method for solving fractional Klein-Gordon equation. Sakarya University Journal of Science, 21(3), 285-293. https://doi.org/10.16984/saufenbilder.283991
AMA Körpınar Z. The residual power series method for solving fractional Klein-Gordon equation. SAUJS. Haziran 2017;21(3):285-293. doi:10.16984/saufenbilder.283991
Chicago Körpınar, Zeliha. “The Residual Power Series Method for Solving Fractional Klein-Gordon Equation”. Sakarya University Journal of Science 21, sy. 3 (Haziran 2017): 285-93. https://doi.org/10.16984/saufenbilder.283991.
EndNote Körpınar Z (01 Haziran 2017) The residual power series method for solving fractional Klein-Gordon equation. Sakarya University Journal of Science 21 3 285–293.
IEEE Z. Körpınar, “The residual power series method for solving fractional Klein-Gordon equation”, SAUJS, c. 21, sy. 3, ss. 285–293, 2017, doi: 10.16984/saufenbilder.283991.
ISNAD Körpınar, Zeliha. “The Residual Power Series Method for Solving Fractional Klein-Gordon Equation”. Sakarya University Journal of Science 21/3 (Haziran 2017), 285-293. https://doi.org/10.16984/saufenbilder.283991.
JAMA Körpınar Z. The residual power series method for solving fractional Klein-Gordon equation. SAUJS. 2017;21:285–293.
MLA Körpınar, Zeliha. “The Residual Power Series Method for Solving Fractional Klein-Gordon Equation”. Sakarya University Journal of Science, c. 21, sy. 3, 2017, ss. 285-93, doi:10.16984/saufenbilder.283991.
Vancouver Körpınar Z. The residual power series method for solving fractional Klein-Gordon equation. SAUJS. 2017;21(3):285-93.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.