Araştırma Makalesi
BibTex RIS Kaynak Göster

Rotational Hypersurfaces in S3(r)XR Product Space Bölüm Araştırma Makalesi

Yıl 2017, , 350 - 355, 01.06.2017
https://doi.org/10.16984/saufenbilder.284219

Öz

 Beş boyutlu Öklid uzayı  içindeki  çarpım uzayının
dönel hiperyüzeylerini ele aldık. Hiperyüzeylerin ortalama eğriliği ve Gauss
eğriliğini hesapladık ve bunların bazı sonuçlarını verdik 

Kaynakça

  • [1] Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces in Result Math. 61 (2012) 315-327.
  • [2] Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22-39 (1862) 1-148.
  • [3] Cheng Q.M., Wan Q.R. Complete hypersurfaces of with constant mean curvature. Monatsh. Math. 118 (1994) 3-4, 171-204.
  • [4] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 351-367.
  • [5] Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014) 883-895.
  • [6] Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces in Manuscripta Math. 88 (1995) 275-289.
  • [7] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93.
  • [8] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920) 454-460.
  • [9] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in J. Math. Anal. Appl. 439 (2016) 798-812.
  • [10] O'Neill, B. Elementary Differential Geometry. Revised second edition. Elsevier/Academic Press, Amsterdam, (2006).
  • [11] Scharlach, C. Affine geometry of surfaces and hypersurfaces in . Symposium on the Differential Geometry of Submanifolds, France (2007) 251-256.
  • [12] Vlachos Th. Hypersurfaces in with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 145-169.

Rotational Hypersurfaces in S3(r)R Product Space

Yıl 2017, , 350 - 355, 01.06.2017
https://doi.org/10.16984/saufenbilder.284219

Öz

We consider rotational hypersurfaces in S3(r)R product space of five dimensional Euclidean space E5. We
calculate the mean curvature and the Gaussian curvature, and give some results
  

Kaynakça

  • [1] Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces in Result Math. 61 (2012) 315-327.
  • [2] Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22-39 (1862) 1-148.
  • [3] Cheng Q.M., Wan Q.R. Complete hypersurfaces of with constant mean curvature. Monatsh. Math. 118 (1994) 3-4, 171-204.
  • [4] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 351-367.
  • [5] Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014) 883-895.
  • [6] Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces in Manuscripta Math. 88 (1995) 275-289.
  • [7] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93.
  • [8] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920) 454-460.
  • [9] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in J. Math. Anal. Appl. 439 (2016) 798-812.
  • [10] O'Neill, B. Elementary Differential Geometry. Revised second edition. Elsevier/Academic Press, Amsterdam, (2006).
  • [11] Scharlach, C. Affine geometry of surfaces and hypersurfaces in . Symposium on the Differential Geometry of Submanifolds, France (2007) 251-256.
  • [12] Vlachos Th. Hypersurfaces in with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 145-169.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Erhan Güler Bu kişi benim

Ömer Kişi Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Gönderilme Tarihi 5 Eylül 2016
Kabul Tarihi 14 Aralık 2016
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Güler, E., & Kişi, Ö. (2017). Rotational Hypersurfaces in S3(r)R Product Space. Sakarya University Journal of Science, 21(3), 350-355. https://doi.org/10.16984/saufenbilder.284219
AMA Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. Haziran 2017;21(3):350-355. doi:10.16984/saufenbilder.284219
Chicago Güler, Erhan, ve Ömer Kişi. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science 21, sy. 3 (Haziran 2017): 350-55. https://doi.org/10.16984/saufenbilder.284219.
EndNote Güler E, Kişi Ö (01 Haziran 2017) Rotational Hypersurfaces in S3(r)R Product Space. Sakarya University Journal of Science 21 3 350–355.
IEEE E. Güler ve Ö. Kişi, “Rotational Hypersurfaces in S3(r)R Product Space”, SAUJS, c. 21, sy. 3, ss. 350–355, 2017, doi: 10.16984/saufenbilder.284219.
ISNAD Güler, Erhan - Kişi, Ömer. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science 21/3 (Haziran 2017), 350-355. https://doi.org/10.16984/saufenbilder.284219.
JAMA Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. 2017;21:350–355.
MLA Güler, Erhan ve Ömer Kişi. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science, c. 21, sy. 3, 2017, ss. 350-5, doi:10.16984/saufenbilder.284219.
Vancouver Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. 2017;21(3):350-5.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.