Araştırma Makalesi
BibTex RIS Kaynak Göster

The effects of layer arrangements on fundamental frequency of layered beams in axial direction

Yıl 2017, , 968 - 977, 01.10.2017
https://doi.org/10.16984/saufenbilder.291234

Öz

In this study, the influence of layer arrangements on
free vibration behavior of beams which have layers in the axial direction is investigated
by using finite element program (ANSYS) according to Timoshenko Beam
Theory.  Each layer has different systems
such as Aluminum/Alumina, Aluminum/Zirconia and Aluminum/Nickel. Layer arrangements
are conducted using the L9 orthogonal array in Taguchi Method. In order to obtain
the sorting order of optimum layers, Taguchi Method and optimum layer
combination are utilized. Analysis of Variance (ANOVA) is used to carry out the
significant layers and percentage of contribution on the responses. According
to the results, the most effective parameters on the responses are obtained for
Aluminum/Alumina with 67.94%, Aluminum/Nickel with 31.08% and Aluminum/Zirconia
with 0.95%, respectively. Fundamental frequency values increase with the
increasing Aluminum/Alumina and Aluminum/Zirconia contents and decrease with Aluminum/Nickel
content in layers.

Kaynakça

  • [1] K. Chandrashekhara, and K.M. Bangera, "Free vibration of composite beams using a refined shear flexible beam element". Computers & Structures 43 (1992) 719-727.
  • [2] W.L. Li, "FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS". Journal of Sound and Vibration 237 (2000) 709-725.
  • [3] B.A.H. Abbas, "Vibrations of Timoshenko beams with elastically restrained ends". Journal of Sound and Vibration 97 (1984) 541-548.
  • [4] S.Y. Lee, and H.Y. Ke, "Free vibrations of a non-uniform beam with general elastically restrained boundary conditions". Journal of Sound and Vibration 136 (1990) 425-437.
  • [5] Q. Mao, and S. Pietrzko, "Free vibration analysis of stepped beams by using Adomian decomposition method". Applied Mathematics and Computation 217 (2010) 3429-3441.
  • [6] S.K. Jang, and C.W. Bert, "Free vibration of stepped beams: Exact and numerical solutions". Journal of Sound and Vibration 130 (1989) 342-346.
  • [7] J.W. Jaworski, and E.H. Dowell, "Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment". Journal of Sound and Vibration 312 (2008) 713-725.
  • [8] F. Ju, H.P. Lee, and K.H. Lee, "On the free vibration of stepped beams". International Journal of Solids and Structures 31 (1994) 3125-3137.
  • [9] D.Y. Zheng, and N.J. Kessissoglou, "Free vibration analysis of a cracked beam by finite element method". Journal of Sound and Vibration 273 (2004) 457-475.
  • [10] M. Kisa, and M. Arif Gurel, "Free vibration analysis of uniform and stepped cracked beams with circular cross sections". International Journal of Engineering Science 45 (2007) 364-380.

Eksenel yönde tabakalı kirişlerin temel frekansı üzerinde tabaka dizilişinin etkileri

Yıl 2017, , 968 - 977, 01.10.2017
https://doi.org/10.16984/saufenbilder.291234

Öz

Bu çalışmada eksenel yönde tabakalara sahip kirişlerin
serbest titreşim davranışı üzerinde tabaka sıralamalarının etkisi Timoshenko
kiriş teorisine göre sonlu elemanlar programı (ANSYS) kullanılarak
incelenmiştir. Her tabaka Alüminyum/Alüminyum oksit,  Alüminyum/Zirkonyum ve Alüminyum/Nikel gibi
farklı sistemlere sahiptir. Tabaka sıralamaları Taguchi Metodunda L9 orthogonal
dizi kullanılarak yürütülmüştür. Optimum tabakaların sıralamasını elde
edebilmek için Taguchi Metodu ve optimum tabaka kombinasyonu kullanıldı.
Yanıtlar üzerinde önemli tabakaları ve katkı yüzdelerini gerçekleştirebilmek
için Varyans Analizi (ANOVA) kullanıldı. Sonuçlara göre yanıtlar üzerinde en
etkili parametreler sırasıyla %67.94 ile Alüminyum/Alüminyum oksit, %31.08 ile
Alüminyum/Nikel ve %0.95 ile Alüminyum/Zirkonyum için elde eddilmiştir. Temel
frekans değerleri tabakalardaki Alüminyum/Alüminyum oksit ve Alüminyum/Zirkonyum
içeriklerinin artmasıyla artmış ve Alüminyum/Nikel içeriğinin artması ile
azalmıştır.

Kaynakça

  • [1] K. Chandrashekhara, and K.M. Bangera, "Free vibration of composite beams using a refined shear flexible beam element". Computers & Structures 43 (1992) 719-727.
  • [2] W.L. Li, "FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS". Journal of Sound and Vibration 237 (2000) 709-725.
  • [3] B.A.H. Abbas, "Vibrations of Timoshenko beams with elastically restrained ends". Journal of Sound and Vibration 97 (1984) 541-548.
  • [4] S.Y. Lee, and H.Y. Ke, "Free vibrations of a non-uniform beam with general elastically restrained boundary conditions". Journal of Sound and Vibration 136 (1990) 425-437.
  • [5] Q. Mao, and S. Pietrzko, "Free vibration analysis of stepped beams by using Adomian decomposition method". Applied Mathematics and Computation 217 (2010) 3429-3441.
  • [6] S.K. Jang, and C.W. Bert, "Free vibration of stepped beams: Exact and numerical solutions". Journal of Sound and Vibration 130 (1989) 342-346.
  • [7] J.W. Jaworski, and E.H. Dowell, "Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment". Journal of Sound and Vibration 312 (2008) 713-725.
  • [8] F. Ju, H.P. Lee, and K.H. Lee, "On the free vibration of stepped beams". International Journal of Solids and Structures 31 (1994) 3125-3137.
  • [9] D.Y. Zheng, and N.J. Kessissoglou, "Free vibration analysis of a cracked beam by finite element method". Journal of Sound and Vibration 273 (2004) 457-475.
  • [10] M. Kisa, and M. Arif Gurel, "Free vibration analysis of uniform and stepped cracked beams with circular cross sections". International Journal of Engineering Science 45 (2007) 364-380.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Konular Makine Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Savaş Evran

Yasin Yılmaz

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 10 Şubat 2017
Kabul Tarihi 3 Haziran 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Evran, S., & Yılmaz, Y. (2017). The effects of layer arrangements on fundamental frequency of layered beams in axial direction. Sakarya University Journal of Science, 21(5), 968-977. https://doi.org/10.16984/saufenbilder.291234
AMA Evran S, Yılmaz Y. The effects of layer arrangements on fundamental frequency of layered beams in axial direction. SAUJS. Ekim 2017;21(5):968-977. doi:10.16984/saufenbilder.291234
Chicago Evran, Savaş, ve Yasin Yılmaz. “The Effects of Layer Arrangements on Fundamental Frequency of Layered Beams in Axial Direction”. Sakarya University Journal of Science 21, sy. 5 (Ekim 2017): 968-77. https://doi.org/10.16984/saufenbilder.291234.
EndNote Evran S, Yılmaz Y (01 Ekim 2017) The effects of layer arrangements on fundamental frequency of layered beams in axial direction. Sakarya University Journal of Science 21 5 968–977.
IEEE S. Evran ve Y. Yılmaz, “The effects of layer arrangements on fundamental frequency of layered beams in axial direction”, SAUJS, c. 21, sy. 5, ss. 968–977, 2017, doi: 10.16984/saufenbilder.291234.
ISNAD Evran, Savaş - Yılmaz, Yasin. “The Effects of Layer Arrangements on Fundamental Frequency of Layered Beams in Axial Direction”. Sakarya University Journal of Science 21/5 (Ekim 2017), 968-977. https://doi.org/10.16984/saufenbilder.291234.
JAMA Evran S, Yılmaz Y. The effects of layer arrangements on fundamental frequency of layered beams in axial direction. SAUJS. 2017;21:968–977.
MLA Evran, Savaş ve Yasin Yılmaz. “The Effects of Layer Arrangements on Fundamental Frequency of Layered Beams in Axial Direction”. Sakarya University Journal of Science, c. 21, sy. 5, 2017, ss. 968-77, doi:10.16984/saufenbilder.291234.
Vancouver Evran S, Yılmaz Y. The effects of layer arrangements on fundamental frequency of layered beams in axial direction. SAUJS. 2017;21(5):968-77.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.