Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of drill geometry on hole quality and cutting performance

Yıl 2017, , 1051 - 1066, 01.10.2017
https://doi.org/10.16984/saufenbilder.292019

Öz

In this study, the effects of different drill geometries
and cutting parameters on drilling performance have been systematically
investigated. Using four types of drills with different geometries, thrust,
torque, surface roughness and geometric tolerance deviations are measured.
Experimental studies have tested the performance of commercially available
two-tool geometry and developed original two-channel geometry. The drilling
operation was performed on GGG 50 material using a 10 mm diameter, two-spindle,
helical, solid cementitious carbide drills. For experiment design, a Taguchi
Test Design was created with three different control factors of four levels,
geometric form of drill, cutting speed and feed. The taguchi S/N analysis and
the graphs in which the obtained data were processed were used in the
evaluation of the test results. With the help of the Anova analysis, importance
and influence rate on the test results of experimental parameters found.
Experimental results were evaluated and optimum geometry and optimum cutting
conditions were determined. According to the results evaluated by "the
smallest best" approach in Taguchi signal-noise analysis; The originally tool
4 has superiority to other geometries in terms of thrust force, Input-output
surface roughness, deviation from circularity, deviation from perpendicularity,
The cutting parameters with the lowest feed rate (0,15 mm/rev.) and the highest
cutting speed (110-120 m/min.) were determined as the optimum levels of control
factors.

Kaynakça

  • [1] Q. Zhang, "A Study of High Performance Twist Drill Design and the Associated Predictive Force Models," Degree of Doctor of Philosophy, Mechanical and Manufacturing Engineering, The Unıversity of New South Wales, Australia, 2007.
  • [2] J. Zhu, "Machining Feature Based Geometric Modeling of Twist Drills " The Degree of Master Mechanical & Industrial Engineering, Applied Science (Mechanical Engineering) Concordia University, Canada, 2011.
  • [3] W. D. Tsai and S. M. Wu, "A Mathematical Model for Drill Point Design and Grinding," Journal of Engineering for Industry, vol. 101, pp. 333-340, 1979.
  • [4] E. Abele and M. Fujara, "Simulation-based twist drill design and geometry optimization," CIRP Annals - Manufacturing Technology, vol. 59, pp. 145-150, 2010.
  • [5] S. Fujii, M. F. Devries, and S. M. Wu, "An Analysis of Drill Geometry for Optimum Drill Design by Computer " Journal Of Engineering for Industry, vol. 70, 1970.
  • [6] S. Fujii, M. F. Devries, and S. M. Wu, "Analysis of the Chisel Edge and the Effect of the d-Theta Relationship on Drill Point Geometry," ASME Journal Of Engineering For Industry, vol. 93, pp. 1093-1105, 1971.
  • [7] W. D. Tsai and S. M. Wu, "Computer Analysis of Drill Point Geometry " International Journal of Machine Tools and Manufacture, vol. 19, pp. 95-108, 1979.
  • [8] W. C. Chen, K. H. Fuh, C. F. Wu, and B. R. Chang, "Design optimization of a split-point drill by force analysis," Journal of Materials Processing Technology, pp. 314-322, 1996.
  • [9] K. Ren and J. Ni, "Analyses of Drill Flute and Cutting Angles," The International Journal of Advanced Manufacturing Technology, vol. 15, pp. 546-553, 1999.
  • [10] J. F. Hsieh and P. D. Lin, "Mathematical model of multiflute drill point," International Journal of Machine Tools & Manufacture, pp. 1181–1193, 2002.
  • [11] H. Hocheng and C. C. Tsao, "Comprehensive analysis of delamination in drilling of composite materials with various drill bits," Journal of Materials Processing Technology, pp. 335–339, 2003.
  • [12] J. A. Degenhardt, R. E. DeVor, and S. G. Kapoor, "Generalized groove-type chip breaker effects on drilling for different drill diameters and flute shapes," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1588-1597, 2005.
  • [13] J.-F. Hsieh, "Mathematical model for helical drill point," International Journal of Machine Tools and Manufacture, vol. 45, pp. 967-977, 2005.
  • [14] J. Jung, R. Mayor, and J. Ni, "Development of freeform grinding methods for complex drill flank surfaces and cutting edge contours," International Journal of Machine Tools and Manufacture, vol. 45, pp. 93-103, 2005.
  • [15] A. Paul, S. G. Kapoor, and R. E. DeVor, "Chisel edge and cutting lip shape optimization for improved twist drill point design," International Journal of Machine Tools and Manufacture, vol. 45, pp. 421-431, 2005.
  • [16] M. Pirtini and I. Lazoglu, "Forces and hole quality in drilling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1271-1281, 2005.
  • [17] H. Hocheng and C. C. Tsao, "Effects of special drill bits on drilling-induced delamination of composite materials," International Journal of Machine Tools and Manufacture, vol. 46, pp. 1403-1416, 2006.
  • [18] A. Vijayaraghavan, "Automated Drill Design Software," diğer makaleyi baz alalım.... 2006.
  • [19] A. Vijayaraghavan and D. Dornfeld, "Automated Drill Modeling for Drilling Process Simulation," Laboratory for Manufacturing and Sustainability, 2006.
  • [20] J. Audy, "A study of computer-assisted analysis of effects of drill geometry and surface coating on forces and power in drilling," Journal of Materials Processing Technology, vol. 204, pp. 130-138, 2008.
  • [21] C. C. Tsao, "Investigation into the effects of drilling parameters on delamination by various step-core drills," Journal of Materials Processing Technology, vol. 206, pp. 405-411, 2008.
  • [22] J. Wang and Q. Zhang, "A study of high-performance plane rake faced twist drills," International Journal of Machine Tools and Manufacture, vol. 48, pp. 1276-1285, 2008.
  • [23] K. Sambhav, S. G. Dhande, and P. Tandon, "CAD Based Mechanistic Modeling of Forces for Generic Drill Point Geometry," Computer-Aided Design & Applications, pp. 809-819, 2010.
  • [24] S. Ema, "Effects of Twist Drill Point Geometry on Torque and Thrust," Faculty of Education, Gifu University, Japan2012.
  • [25] E. D. Güneş, Ç. Toprak, G. Çetin, M. Gül, F., "GGG 50 Malzemenin Abrasif Aşınma Davranışına Borlamanın Etkisi," Elazığ, 2011.
  • [26] B. Kılınç, "GGG 50 Sınıfı Dökme Demire Bakır İlavesinin Mekanik Özelliklere Etkisi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, 2009.
  • [27] M. B. Lazar, "Cutting Force Modelling For Drilling Of Fiber-Reinforced Composites," Pour L'obtention Du Grade De Docteur Ès Sciences, À La Faculté Des Sciences Et Techniques De L'ingénieur, École Polytechnıque Fédérale De Lausanne, Swiss, 2012.
  • [28] U. Şeker, "Title," unpublished|.
  • [29] S. Yağmur, "Delik Delme İşlemlerinde Kesme Parametrelerine Bağlı Olarak Oluşan Sıcaklığın Deneysel Olarak İncelenmesi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2011.

Matkap geometrisinin delik kalitesi ve kesme performansına etkisi

Yıl 2017, , 1051 - 1066, 01.10.2017
https://doi.org/10.16984/saufenbilder.292019

Öz

Bu çalışmada, farklı
matkap geometrileri ve kesme parametrelerinin delme performansı üzerine
etkileri sistematik bir şekilde incelenmiştir. Farklı geometrilere sahip dört
tip matkap kullanılarak itme kuvveti, moment, yüzey pürüzlülüğü ve geometrik
toleranstan sapma değerleri ölçülmüştür. Deneysel çalışmalarda ticari olarak
temin edilebilen yaygın iki takım geometrisi ile özgün iki kanal geometrisinin performansları
test edilmiştir. Delme operasyonu, 10 mm çapında, iki ağızlı, helisel, yekpare
sementit karbür matkaplar kullanılarak GGG 50 malzemesi üzerinde
gerçekleştirilmiştir. Deney deseni için matkabın geometrik formu, kesme hızı ve
ilerleme miktarı olmak üzere dörder seviyeli üç farklı kontrol faktörü ile bir
Taguchi Deney Tasarımı oluşturulmuştur. Deney sonuçlarının değerlendirilmesinde
Taguchi S/N analizi ve elde edilen verilerin işlendiği grafikler
kullanılmıştır. Anova analizi yardımıyla da deney parametrelerinin deney
sonuçları üzerindeki önemi ve etki oranları bulunmuştur. Deneysel sonuçlar
değerlendirilerek optimum geometri ve optimum işleme şartları belirlenmiştir.
Taguchi Sinyal-Gürültü analizinde “en küçük en iyidir” yaklaşımıyla
değerlendirilen sonuçlara göre; ilerleme kuvveti, giriş-çıkış yüzey
pürüzlülüğü, dairesellikten sapma ve diklikten sapma açısından özgün olarak
geliştirilen 4 numaralı takım geometrisi diğer geometrilere üstünlük sağlarken,
ilerlemenin en düşük olduğu (0,15 mm/dev.) ve kesme hızının en yüksek olduğu
(110-120 m/dak.) kesme parametreleri ise kontrol faktörlerinin optimum
seviyeleri olarak belirlenmiştir.

Kaynakça

  • [1] Q. Zhang, "A Study of High Performance Twist Drill Design and the Associated Predictive Force Models," Degree of Doctor of Philosophy, Mechanical and Manufacturing Engineering, The Unıversity of New South Wales, Australia, 2007.
  • [2] J. Zhu, "Machining Feature Based Geometric Modeling of Twist Drills " The Degree of Master Mechanical & Industrial Engineering, Applied Science (Mechanical Engineering) Concordia University, Canada, 2011.
  • [3] W. D. Tsai and S. M. Wu, "A Mathematical Model for Drill Point Design and Grinding," Journal of Engineering for Industry, vol. 101, pp. 333-340, 1979.
  • [4] E. Abele and M. Fujara, "Simulation-based twist drill design and geometry optimization," CIRP Annals - Manufacturing Technology, vol. 59, pp. 145-150, 2010.
  • [5] S. Fujii, M. F. Devries, and S. M. Wu, "An Analysis of Drill Geometry for Optimum Drill Design by Computer " Journal Of Engineering for Industry, vol. 70, 1970.
  • [6] S. Fujii, M. F. Devries, and S. M. Wu, "Analysis of the Chisel Edge and the Effect of the d-Theta Relationship on Drill Point Geometry," ASME Journal Of Engineering For Industry, vol. 93, pp. 1093-1105, 1971.
  • [7] W. D. Tsai and S. M. Wu, "Computer Analysis of Drill Point Geometry " International Journal of Machine Tools and Manufacture, vol. 19, pp. 95-108, 1979.
  • [8] W. C. Chen, K. H. Fuh, C. F. Wu, and B. R. Chang, "Design optimization of a split-point drill by force analysis," Journal of Materials Processing Technology, pp. 314-322, 1996.
  • [9] K. Ren and J. Ni, "Analyses of Drill Flute and Cutting Angles," The International Journal of Advanced Manufacturing Technology, vol. 15, pp. 546-553, 1999.
  • [10] J. F. Hsieh and P. D. Lin, "Mathematical model of multiflute drill point," International Journal of Machine Tools & Manufacture, pp. 1181–1193, 2002.
  • [11] H. Hocheng and C. C. Tsao, "Comprehensive analysis of delamination in drilling of composite materials with various drill bits," Journal of Materials Processing Technology, pp. 335–339, 2003.
  • [12] J. A. Degenhardt, R. E. DeVor, and S. G. Kapoor, "Generalized groove-type chip breaker effects on drilling for different drill diameters and flute shapes," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1588-1597, 2005.
  • [13] J.-F. Hsieh, "Mathematical model for helical drill point," International Journal of Machine Tools and Manufacture, vol. 45, pp. 967-977, 2005.
  • [14] J. Jung, R. Mayor, and J. Ni, "Development of freeform grinding methods for complex drill flank surfaces and cutting edge contours," International Journal of Machine Tools and Manufacture, vol. 45, pp. 93-103, 2005.
  • [15] A. Paul, S. G. Kapoor, and R. E. DeVor, "Chisel edge and cutting lip shape optimization for improved twist drill point design," International Journal of Machine Tools and Manufacture, vol. 45, pp. 421-431, 2005.
  • [16] M. Pirtini and I. Lazoglu, "Forces and hole quality in drilling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1271-1281, 2005.
  • [17] H. Hocheng and C. C. Tsao, "Effects of special drill bits on drilling-induced delamination of composite materials," International Journal of Machine Tools and Manufacture, vol. 46, pp. 1403-1416, 2006.
  • [18] A. Vijayaraghavan, "Automated Drill Design Software," diğer makaleyi baz alalım.... 2006.
  • [19] A. Vijayaraghavan and D. Dornfeld, "Automated Drill Modeling for Drilling Process Simulation," Laboratory for Manufacturing and Sustainability, 2006.
  • [20] J. Audy, "A study of computer-assisted analysis of effects of drill geometry and surface coating on forces and power in drilling," Journal of Materials Processing Technology, vol. 204, pp. 130-138, 2008.
  • [21] C. C. Tsao, "Investigation into the effects of drilling parameters on delamination by various step-core drills," Journal of Materials Processing Technology, vol. 206, pp. 405-411, 2008.
  • [22] J. Wang and Q. Zhang, "A study of high-performance plane rake faced twist drills," International Journal of Machine Tools and Manufacture, vol. 48, pp. 1276-1285, 2008.
  • [23] K. Sambhav, S. G. Dhande, and P. Tandon, "CAD Based Mechanistic Modeling of Forces for Generic Drill Point Geometry," Computer-Aided Design & Applications, pp. 809-819, 2010.
  • [24] S. Ema, "Effects of Twist Drill Point Geometry on Torque and Thrust," Faculty of Education, Gifu University, Japan2012.
  • [25] E. D. Güneş, Ç. Toprak, G. Çetin, M. Gül, F., "GGG 50 Malzemenin Abrasif Aşınma Davranışına Borlamanın Etkisi," Elazığ, 2011.
  • [26] B. Kılınç, "GGG 50 Sınıfı Dökme Demire Bakır İlavesinin Mekanik Özelliklere Etkisi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, 2009.
  • [27] M. B. Lazar, "Cutting Force Modelling For Drilling Of Fiber-Reinforced Composites," Pour L'obtention Du Grade De Docteur Ès Sciences, À La Faculté Des Sciences Et Techniques De L'ingénieur, École Polytechnıque Fédérale De Lausanne, Swiss, 2012.
  • [28] U. Şeker, "Title," unpublished|.
  • [29] S. Yağmur, "Delik Delme İşlemlerinde Kesme Parametrelerine Bağlı Olarak Oluşan Sıcaklığın Deneysel Olarak İncelenmesi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2011.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mehtap Yavuz

Harun Gökçe

Çağlar Yavaş Bu kişi benim

İhsan Korkut

Ulvi Şeker

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 13 Şubat 2017
Kabul Tarihi 14 Ağustos 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Yavuz, M., Gökçe, H., Yavaş, Ç., Korkut, İ., vd. (2017). Effect of drill geometry on hole quality and cutting performance. Sakarya University Journal of Science, 21(5), 1051-1066. https://doi.org/10.16984/saufenbilder.292019
AMA Yavuz M, Gökçe H, Yavaş Ç, Korkut İ, Şeker U. Effect of drill geometry on hole quality and cutting performance. SAUJS. Ekim 2017;21(5):1051-1066. doi:10.16984/saufenbilder.292019
Chicago Yavuz, Mehtap, Harun Gökçe, Çağlar Yavaş, İhsan Korkut, ve Ulvi Şeker. “Effect of Drill Geometry on Hole Quality and Cutting Performance”. Sakarya University Journal of Science 21, sy. 5 (Ekim 2017): 1051-66. https://doi.org/10.16984/saufenbilder.292019.
EndNote Yavuz M, Gökçe H, Yavaş Ç, Korkut İ, Şeker U (01 Ekim 2017) Effect of drill geometry on hole quality and cutting performance. Sakarya University Journal of Science 21 5 1051–1066.
IEEE M. Yavuz, H. Gökçe, Ç. Yavaş, İ. Korkut, ve U. Şeker, “Effect of drill geometry on hole quality and cutting performance”, SAUJS, c. 21, sy. 5, ss. 1051–1066, 2017, doi: 10.16984/saufenbilder.292019.
ISNAD Yavuz, Mehtap vd. “Effect of Drill Geometry on Hole Quality and Cutting Performance”. Sakarya University Journal of Science 21/5 (Ekim 2017), 1051-1066. https://doi.org/10.16984/saufenbilder.292019.
JAMA Yavuz M, Gökçe H, Yavaş Ç, Korkut İ, Şeker U. Effect of drill geometry on hole quality and cutting performance. SAUJS. 2017;21:1051–1066.
MLA Yavuz, Mehtap vd. “Effect of Drill Geometry on Hole Quality and Cutting Performance”. Sakarya University Journal of Science, c. 21, sy. 5, 2017, ss. 1051-66, doi:10.16984/saufenbilder.292019.
Vancouver Yavuz M, Gökçe H, Yavaş Ç, Korkut İ, Şeker U. Effect of drill geometry on hole quality and cutting performance. SAUJS. 2017;21(5):1051-66.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.