Araştırma Makalesi
BibTex RIS Kaynak Göster

Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu

Yıl 2018, , 748 - 754, 01.04.2018
https://doi.org/10.16984/saufenbilder.343027

Öz

Bu çalışmada,  sol-jel
yöntemi ile tetraetil ortosilikat (TEOS) ön başlatıcısı varlığında zirkonyum
fosfat  (ZrP) ve Poli (etilen oksit)
temelli ZrP/ PEO kompozit malzemesi üretilmiştir. Hazırlanan malzemenin yapısı
X-ışını difraksiyonu (XRD) ve Fourier transform IR spektroskopisi (FTIR)
yöntemleri ile incelenmiştir. Isısal özellikleri ise termal gravimetrik analiz
(TGA) ile incelenmiştir. TGA analizinde, sentezlenen malzemenin 300 °C’e kadar
kararlı olduğu bulunmuştur. Üretilen bu malzemenin maliyeti düşüktür, ayrıca
ısıtıldığında 100 °C’nin üzerindeki sıcaklıklarda 300 °C ye kadar bozulmaya
uğramamaktadır. 300 °C’ye kadar olan ısısal kararlılığı ve su tutma kabiliyeti
sayesinde ZrP/PEO kompozit malzemesi, ara sıcaklık yakıt pillerinde
kullanılabilme potansiyeline sahiptir.


















Kaynakça

  • REFERENCES
  • [1] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000.
  • [2] JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435-8437, 1995
  • [3] E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013.
  • [4] R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003.
  • [5] B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organic-inorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000.
  • [6] Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003.
  • [7] M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012.
  • [8] W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu,‘Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411-412, 54-63, 2012
  • [9] X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349.
  • [10] J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986.
  • [11] I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999.
  • [12] J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004.
  • [13] A. Goni-Urtiaga, D. Presvytes and K. Scott., 'Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review' International Journal of Hydrogen Energy, vol.37, pp.3358-3372, 2012.
  • [14] A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984 [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal Of Hydrogen Energy, vol.35, pp.9349-9384, 2010.

Synthesis and characterization of zirconium phosphate and poly(ethylene oxide) based polymer composite

Yıl 2018, , 748 - 754, 01.04.2018
https://doi.org/10.16984/saufenbilder.343027

Öz

In this study, by using tetraethyl orthosilicate (TEOS) as
precursor, a composite material based on the zirkonium phosphate and poly (ethylene
oksit) (PEO) polymer (ZrP / PEO) has been prepared through the sol-gel method.
The characterisation of the obtained material has been carried out by using
flourer transform–infrared spectroscopy (FTIR) and X-ray diffraction (XRD)
methods. Thermal properties have been investigated with thermal gravimetric
analyzing (TGA). It has been founded that ZrP/PEO polymer composite material is
stable even up to 300 °C. Thanks to the thermal stability and water uptake
ability, ZrP/PEO polymer composite is the promising candidate to be used as a
medium temperature fuel-cell electrolyte material. 

Kaynakça

  • REFERENCES
  • [1] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000.
  • [2] JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435-8437, 1995
  • [3] E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013.
  • [4] R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003.
  • [5] B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organic-inorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000.
  • [6] Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003.
  • [7] M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012.
  • [8] W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu,‘Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411-412, 54-63, 2012
  • [9] X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349.
  • [10] J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986.
  • [11] I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999.
  • [12] J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004.
  • [13] A. Goni-Urtiaga, D. Presvytes and K. Scott., 'Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review' International Journal of Hydrogen Energy, vol.37, pp.3358-3372, 2012.
  • [14] A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984 [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal Of Hydrogen Energy, vol.35, pp.9349-9384, 2010.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Asuman Çelik Küçük

Emrah Demirkal Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2018
Gönderilme Tarihi 12 Ekim 2017
Kabul Tarihi 1 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Çelik Küçük, A., & Demirkal, E. (2018). Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. Sakarya University Journal of Science, 22(2), 748-754. https://doi.org/10.16984/saufenbilder.343027
AMA Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. Nisan 2018;22(2):748-754. doi:10.16984/saufenbilder.343027
Chicago Çelik Küçük, Asuman, ve Emrah Demirkal. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science 22, sy. 2 (Nisan 2018): 748-54. https://doi.org/10.16984/saufenbilder.343027.
EndNote Çelik Küçük A, Demirkal E (01 Nisan 2018) Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. Sakarya University Journal of Science 22 2 748–754.
IEEE A. Çelik Küçük ve E. Demirkal, “Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu”, SAUJS, c. 22, sy. 2, ss. 748–754, 2018, doi: 10.16984/saufenbilder.343027.
ISNAD Çelik Küçük, Asuman - Demirkal, Emrah. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science 22/2 (Nisan 2018), 748-754. https://doi.org/10.16984/saufenbilder.343027.
JAMA Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. 2018;22:748–754.
MLA Çelik Küçük, Asuman ve Emrah Demirkal. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science, c. 22, sy. 2, 2018, ss. 748-54, doi:10.16984/saufenbilder.343027.
Vancouver Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. 2018;22(2):748-54.