Araştırma Makalesi
BibTex RIS Kaynak Göster

Different Approximation to Fuzzy Ring Homomorphisms

Yıl 2019, , 1163 - 1172, 01.12.2019
https://doi.org/10.16984/saufenbilder.379634

Öz

Bu
çalışmada TL-halka homomorfizmaları tanımı verildi. Literatürde fuzzy halka
homomorfizma tanımını Malik ve Mordeson kendi tanımladıkları fuzzy fonksiyon
tanımını kullanarak vermişlerdir. Bu çalışmada biz fuzzy halka homomorfizması
tanımını Demirci’nin Fuzzy Fonksiyon tanımını kullanarak verdik. Klasik
cebirdeki halka homomorfizmaları ile ilgili bazı tanım ve teoremleri fuzzy
cebirine taşıdık ve ispatladık.

Kaynakça

  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems 143(2004) 5-26.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper II: General Constructions and Parameterized Families, Fuzzy Sets and Systems 145 (2004) 411-438.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper III: Continuous t-Norms, Fuzzy Sets and Systems 145 (2004) 439-454.
  • Demirci M. and Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems 144 (2004) 441-458.
  • Demirci M., Fuzzy Functions and Their Applications, Journal of .Mathematical Analysis and Applications 252 (2000) 495-517.
  • Demirci M., Fundamentals of M-vague Algebra and M-Vague Arithmetic Operations, Int. J. Uncertainly, Fuzziness Knowledge-Based Systems 10, 1 (2002) 25-75.
  • ostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topology Atlas, Toronto, 2002
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 2: Generated ТL-ideals, Fuzzy Sets and Systems 87 (1997) 209-217.
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 1: Basic concepts, Fuzzy Sets and Systems 68 (1994) 93-103.
  • Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • Karaçal F. and Khadjiev D, ∨-Distributive and infinetly ∨-distributive t-norms on complete lattice, Fuzzy Sets and Systems 151 (2005) 341-352
  • Baets B. De, Mesiar R., Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1999) 61-75
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517
  • W.J. Liu, Fuzzy Invariant supgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139
  • W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 11 (1983) 31-41
  • D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets and Systems, 46 (1992) 139-146
  • Yamak, S., Fuzzy Algebraic Structure and Fuzzy Representations, Postgraduate Thesis, Karadeniz Technical University, Institute of Science and Technology, 1995.
Yıl 2019, , 1163 - 1172, 01.12.2019
https://doi.org/10.16984/saufenbilder.379634

Öz

Kaynakça

  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems 143(2004) 5-26.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper II: General Constructions and Parameterized Families, Fuzzy Sets and Systems 145 (2004) 411-438.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper III: Continuous t-Norms, Fuzzy Sets and Systems 145 (2004) 439-454.
  • Demirci M. and Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems 144 (2004) 441-458.
  • Demirci M., Fuzzy Functions and Their Applications, Journal of .Mathematical Analysis and Applications 252 (2000) 495-517.
  • Demirci M., Fundamentals of M-vague Algebra and M-Vague Arithmetic Operations, Int. J. Uncertainly, Fuzziness Knowledge-Based Systems 10, 1 (2002) 25-75.
  • ostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topology Atlas, Toronto, 2002
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 2: Generated ТL-ideals, Fuzzy Sets and Systems 87 (1997) 209-217.
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 1: Basic concepts, Fuzzy Sets and Systems 68 (1994) 93-103.
  • Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • Karaçal F. and Khadjiev D, ∨-Distributive and infinetly ∨-distributive t-norms on complete lattice, Fuzzy Sets and Systems 151 (2005) 341-352
  • Baets B. De, Mesiar R., Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1999) 61-75
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517
  • W.J. Liu, Fuzzy Invariant supgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139
  • W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 11 (1983) 31-41
  • D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets and Systems, 46 (1992) 139-146
  • Yamak, S., Fuzzy Algebraic Structure and Fuzzy Representations, Postgraduate Thesis, Karadeniz Technical University, Institute of Science and Technology, 1995.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Ümit Deniz 0000-0002-9248-2769

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 16 Ocak 2018
Kabul Tarihi 11 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Deniz, Ü. (2019). Different Approximation to Fuzzy Ring Homomorphisms. Sakarya University Journal of Science, 23(6), 1163-1172. https://doi.org/10.16984/saufenbilder.379634
AMA Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. Aralık 2019;23(6):1163-1172. doi:10.16984/saufenbilder.379634
Chicago Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science 23, sy. 6 (Aralık 2019): 1163-72. https://doi.org/10.16984/saufenbilder.379634.
EndNote Deniz Ü (01 Aralık 2019) Different Approximation to Fuzzy Ring Homomorphisms. Sakarya University Journal of Science 23 6 1163–1172.
IEEE Ü. Deniz, “Different Approximation to Fuzzy Ring Homomorphisms”, SAUJS, c. 23, sy. 6, ss. 1163–1172, 2019, doi: 10.16984/saufenbilder.379634.
ISNAD Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science 23/6 (Aralık 2019), 1163-1172. https://doi.org/10.16984/saufenbilder.379634.
JAMA Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. 2019;23:1163–1172.
MLA Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science, c. 23, sy. 6, 2019, ss. 1163-72, doi:10.16984/saufenbilder.379634.
Vancouver Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. 2019;23(6):1163-72.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.