Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Approximation to Classify the Liquids Measured in Microwave Frequency Range

Yıl 2019, , 724 - 730, 01.10.2019
https://doi.org/10.16984/saufenbilder.495640

Öz

Different classification techniques have
been proposed to analyze the measurement results in order to show that the
liquids measured in the microwave frequency range can be separated. Furthermore,
it has been shown that the proposed process can be applied successfully with
different liquid quantities. Furthermore, the effect of different type
containers has been demonstrated. In this context, five different liquids have
been measured between 0.8-5 GHz in this study, by using ring resonator method. Thus,
the ability of the proposed model has been demonstrated by the success of the
measurement method and classification techniques.

Teşekkür

The author thanks to Ilhami Unal and Aysun Sayıntılı for providing the measurement data made at Marmara Research Center of TUBITAK.

Kaynakça

  • Referans1 N. T. Cherpak, A. A. Barannik, Y. V. Prokopenko, T. A. Smirnova, and Y. F. Filipov, “A New Technique of Dielectric Characterization of Liquids,” in Nonlinear Dielectric Phenomena in Complex Liquids, Dordrecht: Kluwer Academic Publishers, 2004, pp. 63–76.
  • Referans2 B. Lucic et al., “Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods,” Arkivoc, vol. 2002, no. 4, p. 45, Jul. 2002.
  • Referans3 S. Kim, J. Kwak, and B. Ko, “Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color,” J. Broadcast Eng., vol. 21, no. 3, pp. 425–435, May 2016.
  • Referans4 T. Ghorbanpour, A. Ghanadzadeh Gilani, and S. Fallahi, “Experimental measurement, excess parameters, and analysis of permittivity data for (primary diols + ketones) binary systems,” J. Mol. Liq., vol. 260, pp. 403–414, Jun. 2018.
  • Referans5 T. Ozturk, A. Elhawil, İ. Uluer, and M. T. Guneser, “Development of extraction techniques for dielectric constant from free-space measured S-parameters between 50 and 170 GHz,” J. Mater. Sci. Mater. Electron., vol. 28, no. 15, pp. 11543–11549, Aug. 2017.
  • Referans6 T. Ozturk, M. Hudlička, and İ. Uluer, “Development of Measurement and Extraction Technique of Complex Permittivity Using Transmission Parameter S21 for Millimeter Wave Frequencies,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 12, pp. 1510–1520, Dec. 2017.
  • Referans7 I. Matiss, “Multi-element capacitive sensor for non-destructive measurement of the dielectric permittivity and thickness of dielectric plates and shells,” NDT E Int., vol. 66, pp. 99–105, Sep. 2014.
  • Referans8 M. Fares, Y. Fargier, G. Villain, X. Derobert, and S. P. Lopes, “Determining the permittivity profile inside reinforced concrete using capacitive probes,” NDT E Int., vol. 79, pp. 150–161, Apr. 2016.
  • Referans9 G. Villain, A. Ihamouten, and X. Dérobert, “Determination of concrete water content by coupling electromagnetic methods: Coaxial/cylindrical transition line with capacitive probes,” NDT E Int., vol. 88, no. July 2016, pp. 59–70, Jun. 2017.
  • Referans10 M.-K. Olkkonen, “Permittivity scanning of asphalt in a transmission configuration across 7–17 GHz employing a phase compensation method,” NDT E Int., vol. 83, pp. 143–151, Oct. 2016.
  • Referans11 Z. Li, A. Haigh, C. Soutis, A. Gibson, and R. Sloan, “A Simulation-Assisted Non-destructive Approach for Permittivity Measurement Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 37, no. 3, p. 39, Sep. 2018.
  • Referans12 Y. Jiang, Y. Ju, and L. Yang, “Nondestructive In-situ Permittivity Measurement of Liquid Within a Bottle Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 35, no. 1, p. 7, Mar. 2016.
  • Referans13 A. A. Amooey, “Improved mixing rules for description of the permittivity of mixtures,” J. Mol. Liq., vol. 180, pp. 31–33, Apr. 2013.
  • Referans14 P. Saponaro, S. Sorensen, A. Kolagunda, and C. Kambhamettu, “Material classification with thermal imagery,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, vol. 07–12–June, pp. 4649–4656.
  • Referans15 T. Bhattacharjee, J. Wade, and C. Kemp, “Material Recognition from Heat Transfer given Varying Initial Conditions and Short-Duration Contact,” in Robotics: Science and Systems XI, 2015.
  • Referans16 M. X. Bastidas-Rodríguez, “Fractographic classification in metallic materials by using 3D processing and computer vision techniques,” Rev. Fac. Ing., vol. 25, no. 43, pp. 83–96, 2016.
  • Referans17 T. Kanungo et al., “An Efficient k -Means Clustering Algorithm : Analysis and Implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.
  • Referans18 T. Ozturk, “Classification of measured unsafe liquids using microwave spectroscopy system by multivariate data analysis techniques,” J. Hazard. Mater., vol. 363, pp. 309–315, Feb. 2019.
  • Referans19 S. Ozturk, E. Kayabasi, E. Celik, and H. Kurt, “Determination of lapping parameters for silicon wafer using an artificial neural network,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 260–270, Jan. 2018.
  • Referans20 E. Kayabasi, S. Ozturk, E. Celik, and H. Kurt, “Determination of cutting parameters for silicon wafer with a Diamond Wire Saw using an artificial neural network,” Sol. Energy, vol. 149, pp. 285–293, Jun. 2017.
  • Referans21 G. E. Chatzarakis and T. Education, “Review of Different Ring Resonator Coupling Methods,” in Proceedings of the 9th WSEAS International Conference on Telecommunications and Informatics, 2010, pp. 227–231.
  • Referans22 M. Fishel, P. Koehn, and E. Rosen, “Comparison of ring resonator relative permittivity measurements to ground penetrating radar data,” May 2014.
  • Referans23 L. Su, J. Mata-Contreras, P. Velez, and F. Martin, “Estimation of the complex permittivity of liquids by means of complementary split ring resonator (CSRR) loaded transmission lines,” in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, pp. 1–3.
  • Referans24 A. Kulkarni and V. Deshmukh, “Dielectric Properties Measurement Using Ring Resonator,” Int. J. Sci. Res., vol. 4, no. 4, pp. 2361–2364, 2015.
  • Referans25 M. Ringnér, “What is principal component analysis?,” Nat. Biotechnol., vol. 26, no. 3, pp. 303–304, 2008.
Yıl 2019, , 724 - 730, 01.10.2019
https://doi.org/10.16984/saufenbilder.495640

Öz

Kaynakça

  • Referans1 N. T. Cherpak, A. A. Barannik, Y. V. Prokopenko, T. A. Smirnova, and Y. F. Filipov, “A New Technique of Dielectric Characterization of Liquids,” in Nonlinear Dielectric Phenomena in Complex Liquids, Dordrecht: Kluwer Academic Publishers, 2004, pp. 63–76.
  • Referans2 B. Lucic et al., “Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods,” Arkivoc, vol. 2002, no. 4, p. 45, Jul. 2002.
  • Referans3 S. Kim, J. Kwak, and B. Ko, “Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color,” J. Broadcast Eng., vol. 21, no. 3, pp. 425–435, May 2016.
  • Referans4 T. Ghorbanpour, A. Ghanadzadeh Gilani, and S. Fallahi, “Experimental measurement, excess parameters, and analysis of permittivity data for (primary diols + ketones) binary systems,” J. Mol. Liq., vol. 260, pp. 403–414, Jun. 2018.
  • Referans5 T. Ozturk, A. Elhawil, İ. Uluer, and M. T. Guneser, “Development of extraction techniques for dielectric constant from free-space measured S-parameters between 50 and 170 GHz,” J. Mater. Sci. Mater. Electron., vol. 28, no. 15, pp. 11543–11549, Aug. 2017.
  • Referans6 T. Ozturk, M. Hudlička, and İ. Uluer, “Development of Measurement and Extraction Technique of Complex Permittivity Using Transmission Parameter S21 for Millimeter Wave Frequencies,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 12, pp. 1510–1520, Dec. 2017.
  • Referans7 I. Matiss, “Multi-element capacitive sensor for non-destructive measurement of the dielectric permittivity and thickness of dielectric plates and shells,” NDT E Int., vol. 66, pp. 99–105, Sep. 2014.
  • Referans8 M. Fares, Y. Fargier, G. Villain, X. Derobert, and S. P. Lopes, “Determining the permittivity profile inside reinforced concrete using capacitive probes,” NDT E Int., vol. 79, pp. 150–161, Apr. 2016.
  • Referans9 G. Villain, A. Ihamouten, and X. Dérobert, “Determination of concrete water content by coupling electromagnetic methods: Coaxial/cylindrical transition line with capacitive probes,” NDT E Int., vol. 88, no. July 2016, pp. 59–70, Jun. 2017.
  • Referans10 M.-K. Olkkonen, “Permittivity scanning of asphalt in a transmission configuration across 7–17 GHz employing a phase compensation method,” NDT E Int., vol. 83, pp. 143–151, Oct. 2016.
  • Referans11 Z. Li, A. Haigh, C. Soutis, A. Gibson, and R. Sloan, “A Simulation-Assisted Non-destructive Approach for Permittivity Measurement Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 37, no. 3, p. 39, Sep. 2018.
  • Referans12 Y. Jiang, Y. Ju, and L. Yang, “Nondestructive In-situ Permittivity Measurement of Liquid Within a Bottle Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 35, no. 1, p. 7, Mar. 2016.
  • Referans13 A. A. Amooey, “Improved mixing rules for description of the permittivity of mixtures,” J. Mol. Liq., vol. 180, pp. 31–33, Apr. 2013.
  • Referans14 P. Saponaro, S. Sorensen, A. Kolagunda, and C. Kambhamettu, “Material classification with thermal imagery,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, vol. 07–12–June, pp. 4649–4656.
  • Referans15 T. Bhattacharjee, J. Wade, and C. Kemp, “Material Recognition from Heat Transfer given Varying Initial Conditions and Short-Duration Contact,” in Robotics: Science and Systems XI, 2015.
  • Referans16 M. X. Bastidas-Rodríguez, “Fractographic classification in metallic materials by using 3D processing and computer vision techniques,” Rev. Fac. Ing., vol. 25, no. 43, pp. 83–96, 2016.
  • Referans17 T. Kanungo et al., “An Efficient k -Means Clustering Algorithm : Analysis and Implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.
  • Referans18 T. Ozturk, “Classification of measured unsafe liquids using microwave spectroscopy system by multivariate data analysis techniques,” J. Hazard. Mater., vol. 363, pp. 309–315, Feb. 2019.
  • Referans19 S. Ozturk, E. Kayabasi, E. Celik, and H. Kurt, “Determination of lapping parameters for silicon wafer using an artificial neural network,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 260–270, Jan. 2018.
  • Referans20 E. Kayabasi, S. Ozturk, E. Celik, and H. Kurt, “Determination of cutting parameters for silicon wafer with a Diamond Wire Saw using an artificial neural network,” Sol. Energy, vol. 149, pp. 285–293, Jun. 2017.
  • Referans21 G. E. Chatzarakis and T. Education, “Review of Different Ring Resonator Coupling Methods,” in Proceedings of the 9th WSEAS International Conference on Telecommunications and Informatics, 2010, pp. 227–231.
  • Referans22 M. Fishel, P. Koehn, and E. Rosen, “Comparison of ring resonator relative permittivity measurements to ground penetrating radar data,” May 2014.
  • Referans23 L. Su, J. Mata-Contreras, P. Velez, and F. Martin, “Estimation of the complex permittivity of liquids by means of complementary split ring resonator (CSRR) loaded transmission lines,” in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, pp. 1–3.
  • Referans24 A. Kulkarni and V. Deshmukh, “Dielectric Properties Measurement Using Ring Resonator,” Int. J. Sci. Res., vol. 4, no. 4, pp. 2361–2364, 2015.
  • Referans25 M. Ringnér, “What is principal component analysis?,” Nat. Biotechnol., vol. 26, no. 3, pp. 303–304, 2008.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Turgut Öztürk 0000-0002-0749-5849

Yayımlanma Tarihi 1 Ekim 2019
Gönderilme Tarihi 12 Aralık 2018
Kabul Tarihi 5 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Öztürk, T. (2019). A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya University Journal of Science, 23(5), 724-730. https://doi.org/10.16984/saufenbilder.495640
AMA Öztürk T. A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. SAUJS. Ekim 2019;23(5):724-730. doi:10.16984/saufenbilder.495640
Chicago Öztürk, Turgut. “A New Approximation to Classify the Liquids Measured in Microwave Frequency Range”. Sakarya University Journal of Science 23, sy. 5 (Ekim 2019): 724-30. https://doi.org/10.16984/saufenbilder.495640.
EndNote Öztürk T (01 Ekim 2019) A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya University Journal of Science 23 5 724–730.
IEEE T. Öztürk, “A New Approximation to Classify the Liquids Measured in Microwave Frequency Range”, SAUJS, c. 23, sy. 5, ss. 724–730, 2019, doi: 10.16984/saufenbilder.495640.
ISNAD Öztürk, Turgut. “A New Approximation to Classify the Liquids Measured in Microwave Frequency Range”. Sakarya University Journal of Science 23/5 (Ekim 2019), 724-730. https://doi.org/10.16984/saufenbilder.495640.
JAMA Öztürk T. A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. SAUJS. 2019;23:724–730.
MLA Öztürk, Turgut. “A New Approximation to Classify the Liquids Measured in Microwave Frequency Range”. Sakarya University Journal of Science, c. 23, sy. 5, 2019, ss. 724-30, doi:10.16984/saufenbilder.495640.
Vancouver Öztürk T. A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. SAUJS. 2019;23(5):724-30.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.