Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Class of s-type X(u,v;l_p(E)) Operators

Yıl 2019, , 792 - 800, 01.10.2019
https://doi.org/10.16984/saufenbilder.517762

Öz

In this
study, we introduce the class of s-type
 X(u,v;l_p(E)) operators, L_(u,v;E).  Also we show that this class is a quasi-Banach operator ideal and we study on
the properties of the classes which are produced via different types of
s-numbers.

Kaynakça

  • [1] J. Burgoyne, “Denseness of the generalized eigenvectors of a discrete operator in a Banach space,” Journal of Operator Theory,vol.33, pp. 279-297, 1995.
  • [2] B. Carl, A. Hinrichs, “On s-numbers and Weyl inequalities of operators in Banach spaces,” Bulletin of the London Mathematical Society, vol. 41, no. 2, pp. 332-340, 2009.
  • [3] G. Constant "Operators of ces-p-type," Atti Della Academia Nazionale dei Lincei Rendiconti-classe di Scienze Fisiche-Mathematiche & Naturali, vol. 52, no. 6, pp.875-878, 1973.
  • [4] D. Foroutannia, “On the block sequence space lp (E) and related matrix transformations,” Turkish Journal of Mathematics, vol. 39, pp. 830-841, 2015.
  • [5] E. E. Kara, M. İlkhan, “On a new class of s-type operators,” Konuralp Journal of Mathematics, vol. 3, no. 1, pp. 1-11, 2015.
  • [6] A. Maji, P.D. Srivastava, “Some class of operator ideals,” International Journal of Pure and Applied Mathematics, vol. 83, no. 5, pp. 731-740, 2013.
  • [7] A. Maji, P.D. Srivastava, “Some results of operator ideals on s-type |A,p| operators,” Tamkang Journal of Mathematics, vol. 45, no. 2, pp. 119-136, 2014.
  • [8] A. Maji, P.D. Srivastava, “On operator ideals using weighted Cesàro sequence space,” Journal of the Egyptian Mathematical Society, vol. 22, no. 3, pp. 446-452, 2014.
  • [9] A. Pietsch, “Einigie neu Klassen von Kompakten linearen Abbildungen,” Romanian Journal of Pure and Applied Mathematics , vol. 8, pp. 427-447, 1963.
  • [10] A. Pietsch, “Operator Ideals,” VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, “Eigenvalues and s-numbers,” Cambridge University Press, New York, 1986.
  • [12] A. Pietsch, “s-Numbers of operators in Banach spaces,” Studia Mathematica, vol. 51, no. 3, pp. 201-223,1974.
  • [13] H Roopaei, D Foroutannia, “The norm of certain matrix operators on new difference sequence spaces,” Jordan Journal of Mathematics and Statistics, vol. 8, no. 3, pp. 223 - 237, 2015.
  • [14] H. Roopaei, D Foroutannia, “A new sequence space and norm of certain matrix operators on this space,” Sahand Communications in Mathematical Analysis (SCMA), vol. 3, no. 1, pp. 1-12, 2016.
  • [15] S. Saejung, “Another look at Cesaro sequence spaces,” Journal of Mathematical Analysis and Applications, vol. 366, no. 2, pp. 530–537, 2010.
  • [16] J. S. Shiue, “On the Cesaro sequence spaces,” Tamkang Journal of Mathematics, vol. 1, no. 1, pp. 19–25, 1970.
  • [17] N. Şimşek,V. Karakaya, H. Polat, “Operators ideals of generalized modular spaces of Cesaro type defined by weighted means,” Journal of Computational Analysis and Applications, vol. 19, no. 1, pp. 804-811, 2015.
  • [18] N. Tita, “On Stolz mappings,” Mathematica Japonica, vol. 26, no. 4, pp. 495–496, 1981.
Yıl 2019, , 792 - 800, 01.10.2019
https://doi.org/10.16984/saufenbilder.517762

Öz

Kaynakça

  • [1] J. Burgoyne, “Denseness of the generalized eigenvectors of a discrete operator in a Banach space,” Journal of Operator Theory,vol.33, pp. 279-297, 1995.
  • [2] B. Carl, A. Hinrichs, “On s-numbers and Weyl inequalities of operators in Banach spaces,” Bulletin of the London Mathematical Society, vol. 41, no. 2, pp. 332-340, 2009.
  • [3] G. Constant "Operators of ces-p-type," Atti Della Academia Nazionale dei Lincei Rendiconti-classe di Scienze Fisiche-Mathematiche & Naturali, vol. 52, no. 6, pp.875-878, 1973.
  • [4] D. Foroutannia, “On the block sequence space lp (E) and related matrix transformations,” Turkish Journal of Mathematics, vol. 39, pp. 830-841, 2015.
  • [5] E. E. Kara, M. İlkhan, “On a new class of s-type operators,” Konuralp Journal of Mathematics, vol. 3, no. 1, pp. 1-11, 2015.
  • [6] A. Maji, P.D. Srivastava, “Some class of operator ideals,” International Journal of Pure and Applied Mathematics, vol. 83, no. 5, pp. 731-740, 2013.
  • [7] A. Maji, P.D. Srivastava, “Some results of operator ideals on s-type |A,p| operators,” Tamkang Journal of Mathematics, vol. 45, no. 2, pp. 119-136, 2014.
  • [8] A. Maji, P.D. Srivastava, “On operator ideals using weighted Cesàro sequence space,” Journal of the Egyptian Mathematical Society, vol. 22, no. 3, pp. 446-452, 2014.
  • [9] A. Pietsch, “Einigie neu Klassen von Kompakten linearen Abbildungen,” Romanian Journal of Pure and Applied Mathematics , vol. 8, pp. 427-447, 1963.
  • [10] A. Pietsch, “Operator Ideals,” VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, “Eigenvalues and s-numbers,” Cambridge University Press, New York, 1986.
  • [12] A. Pietsch, “s-Numbers of operators in Banach spaces,” Studia Mathematica, vol. 51, no. 3, pp. 201-223,1974.
  • [13] H Roopaei, D Foroutannia, “The norm of certain matrix operators on new difference sequence spaces,” Jordan Journal of Mathematics and Statistics, vol. 8, no. 3, pp. 223 - 237, 2015.
  • [14] H. Roopaei, D Foroutannia, “A new sequence space and norm of certain matrix operators on this space,” Sahand Communications in Mathematical Analysis (SCMA), vol. 3, no. 1, pp. 1-12, 2016.
  • [15] S. Saejung, “Another look at Cesaro sequence spaces,” Journal of Mathematical Analysis and Applications, vol. 366, no. 2, pp. 530–537, 2010.
  • [16] J. S. Shiue, “On the Cesaro sequence spaces,” Tamkang Journal of Mathematics, vol. 1, no. 1, pp. 19–25, 1970.
  • [17] N. Şimşek,V. Karakaya, H. Polat, “Operators ideals of generalized modular spaces of Cesaro type defined by weighted means,” Journal of Computational Analysis and Applications, vol. 19, no. 1, pp. 804-811, 2015.
  • [18] N. Tita, “On Stolz mappings,” Mathematica Japonica, vol. 26, no. 4, pp. 495–496, 1981.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Pınar Zengin Alp 0000-0001-9699-7199

Merve İlkhan 0000-0002-0831-1474

Yayımlanma Tarihi 1 Ekim 2019
Gönderilme Tarihi 25 Ocak 2019
Kabul Tarihi 25 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Zengin Alp, P., & İlkhan, M. (2019). A New Class of s-type X(u,v;l_p(E)) Operators. Sakarya University Journal of Science, 23(5), 792-800. https://doi.org/10.16984/saufenbilder.517762
AMA Zengin Alp P, İlkhan M. A New Class of s-type X(u,v;l_p(E)) Operators. SAUJS. Ekim 2019;23(5):792-800. doi:10.16984/saufenbilder.517762
Chicago Zengin Alp, Pınar, ve Merve İlkhan. “A New Class of S-Type X(u,v;L_p(E)) Operators”. Sakarya University Journal of Science 23, sy. 5 (Ekim 2019): 792-800. https://doi.org/10.16984/saufenbilder.517762.
EndNote Zengin Alp P, İlkhan M (01 Ekim 2019) A New Class of s-type X(u,v;l_p(E) Operators. Sakarya University Journal of Science 23 5 792–800.
IEEE P. Zengin Alp ve M. İlkhan, “A New Class of s-type X(u,v;l_p(E)) Operators”, SAUJS, c. 23, sy. 5, ss. 792–800, 2019, doi: 10.16984/saufenbilder.517762.
ISNAD Zengin Alp, Pınar - İlkhan, Merve. “A New Class of S-Type X(u,v;L_p(E)) Operators”. Sakarya University Journal of Science 23/5 (Ekim 2019), 792-800. https://doi.org/10.16984/saufenbilder.517762.
JAMA Zengin Alp P, İlkhan M. A New Class of s-type X(u,v;l_p(E)) Operators. SAUJS. 2019;23:792–800.
MLA Zengin Alp, Pınar ve Merve İlkhan. “A New Class of S-Type X(u,v;L_p(E)) Operators”. Sakarya University Journal of Science, c. 23, sy. 5, 2019, ss. 792-00, doi:10.16984/saufenbilder.517762.
Vancouver Zengin Alp P, İlkhan M. A New Class of s-type X(u,v;l_p(E)) Operators. SAUJS. 2019;23(5):792-800.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.