Araştırma Makalesi
BibTex RIS Kaynak Göster

On Generalized Tribonacci Octonions

Yıl 2019, , 731 - 735, 01.10.2019
https://doi.org/10.16984/saufenbilder.525320

Öz

In this paper, we introduced generalized tribonacci octonion sequence which is a generalization of third order recurrence relations. We investigate many identities which are created by using generalized tribonacci sequence. We get different results for these clases of octonions, comprised recurrence relation, summation formulas, Binet formula, norm value and generating function.

Kaynakça

  • Referans1 O. Keçilioğlu, I. Akkus, ‘The Fibonacci Octonions,’ Advances in Applied Clifford Algebras 25 (2015), 151-158.
  • Referans1 C.C. Yalavigi, ‘Properties of Tribonacci Numbers’, Fibonacci Q. 10(3), 231–246 (1972).
  • Referans3 A.G. Shannon, A.F. Horadam, ‘Some Properties of Third-order Recurrence Relations’, Fibonacci Q. 10(2), 135–146 (1972).
  • Referans4 D. Tascı, ‘Padovan and Pell-Padovan Quaternions’, Journal of Science and Arts, 1(42)2018, 125-132.
  • Referans5 I. Akkus, G. Kizilaslan, ‘On Some Properties of Tribonacci Quaternions’, arXiv:1708.05367, 2017.
  • Referans6 G. Cerda-Morales, ‘Identities for Third Order Jacobsthal Quaternions’, Advances in Applied Clifford Algebras 27(2) (2017), 1043–1053.
  • Referans7 G. Cerda-Morales, ‘The third order Jacobsthal Octonions: Some Combinatorial Properties’, arxiv.org/pdf/1710.00602.pdf.
  • Referans8 C.B. Cimen, A. Ipek, ‘On Jacobsthal and Jacobsthal-Lucas Octonions’, Mediterranean Journal of Mathematics, 14:37 (2017), 1–13.
  • Referans9 A. Ipek, C. Cimen, ‘On (𝑝,𝑞) Fibonacci Octonions’. Mathematica Æterna, 6(6)(2016), 923-932.
  • Referans10 A. Szynal-Liana, I. Włoch, ‘The Pell Quaternions and the Pell Octonions’, Advances in Applied Clifford Algebras 26 (2016), 435–440.
  • Referans11 G. Cerda-Morales, ‘On a Generalization of Tribonacci Quaternions’, Mediterranean Journal of Mathematics 14:239 (2017), 1–12.
  • Referans12 G. Cerda-Morales, ‘The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties’, arxiv.org/abs/1807.04140.
  • Referans13 P Catarino, ‘The Modified Pell and Modified k-Pell Quaternions and Octonions’, Advances in Applied Clifford Algebras 26, (2016):577-590.
  • Referans14 A. Karataş, S. Halıcı, ‘Horadam Octonions’, An. S t. Univ. Ovidius Constant A. 25(3)(2017), 97-106.
  • Referans15 A. Özkoç Öztürk, A. Porsuk, ‘Some Remarks Regarding the (𝑝,𝑞) -Fibonacci and Lucas Octonion Polynomials’, Universal Journal ofMathematics and Applications, 1 (1) (2018), 46-53.
Yıl 2019, , 731 - 735, 01.10.2019
https://doi.org/10.16984/saufenbilder.525320

Öz

Kaynakça

  • Referans1 O. Keçilioğlu, I. Akkus, ‘The Fibonacci Octonions,’ Advances in Applied Clifford Algebras 25 (2015), 151-158.
  • Referans1 C.C. Yalavigi, ‘Properties of Tribonacci Numbers’, Fibonacci Q. 10(3), 231–246 (1972).
  • Referans3 A.G. Shannon, A.F. Horadam, ‘Some Properties of Third-order Recurrence Relations’, Fibonacci Q. 10(2), 135–146 (1972).
  • Referans4 D. Tascı, ‘Padovan and Pell-Padovan Quaternions’, Journal of Science and Arts, 1(42)2018, 125-132.
  • Referans5 I. Akkus, G. Kizilaslan, ‘On Some Properties of Tribonacci Quaternions’, arXiv:1708.05367, 2017.
  • Referans6 G. Cerda-Morales, ‘Identities for Third Order Jacobsthal Quaternions’, Advances in Applied Clifford Algebras 27(2) (2017), 1043–1053.
  • Referans7 G. Cerda-Morales, ‘The third order Jacobsthal Octonions: Some Combinatorial Properties’, arxiv.org/pdf/1710.00602.pdf.
  • Referans8 C.B. Cimen, A. Ipek, ‘On Jacobsthal and Jacobsthal-Lucas Octonions’, Mediterranean Journal of Mathematics, 14:37 (2017), 1–13.
  • Referans9 A. Ipek, C. Cimen, ‘On (𝑝,𝑞) Fibonacci Octonions’. Mathematica Æterna, 6(6)(2016), 923-932.
  • Referans10 A. Szynal-Liana, I. Włoch, ‘The Pell Quaternions and the Pell Octonions’, Advances in Applied Clifford Algebras 26 (2016), 435–440.
  • Referans11 G. Cerda-Morales, ‘On a Generalization of Tribonacci Quaternions’, Mediterranean Journal of Mathematics 14:239 (2017), 1–12.
  • Referans12 G. Cerda-Morales, ‘The Unifying Formula for all Tribonacci-type Octonions Sequences and Their Properties’, arxiv.org/abs/1807.04140.
  • Referans13 P Catarino, ‘The Modified Pell and Modified k-Pell Quaternions and Octonions’, Advances in Applied Clifford Algebras 26, (2016):577-590.
  • Referans14 A. Karataş, S. Halıcı, ‘Horadam Octonions’, An. S t. Univ. Ovidius Constant A. 25(3)(2017), 97-106.
  • Referans15 A. Özkoç Öztürk, A. Porsuk, ‘Some Remarks Regarding the (𝑝,𝑞) -Fibonacci and Lucas Octonion Polynomials’, Universal Journal ofMathematics and Applications, 1 (1) (2018), 46-53.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Arzu Özkoç Öztürk 0000-0002-2196-3725

Yayımlanma Tarihi 1 Ekim 2019
Gönderilme Tarihi 11 Şubat 2019
Kabul Tarihi 6 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Özkoç Öztürk, A. (2019). On Generalized Tribonacci Octonions. Sakarya University Journal of Science, 23(5), 731-735. https://doi.org/10.16984/saufenbilder.525320
AMA Özkoç Öztürk A. On Generalized Tribonacci Octonions. SAUJS. Ekim 2019;23(5):731-735. doi:10.16984/saufenbilder.525320
Chicago Özkoç Öztürk, Arzu. “On Generalized Tribonacci Octonions”. Sakarya University Journal of Science 23, sy. 5 (Ekim 2019): 731-35. https://doi.org/10.16984/saufenbilder.525320.
EndNote Özkoç Öztürk A (01 Ekim 2019) On Generalized Tribonacci Octonions. Sakarya University Journal of Science 23 5 731–735.
IEEE A. Özkoç Öztürk, “On Generalized Tribonacci Octonions”, SAUJS, c. 23, sy. 5, ss. 731–735, 2019, doi: 10.16984/saufenbilder.525320.
ISNAD Özkoç Öztürk, Arzu. “On Generalized Tribonacci Octonions”. Sakarya University Journal of Science 23/5 (Ekim 2019), 731-735. https://doi.org/10.16984/saufenbilder.525320.
JAMA Özkoç Öztürk A. On Generalized Tribonacci Octonions. SAUJS. 2019;23:731–735.
MLA Özkoç Öztürk, Arzu. “On Generalized Tribonacci Octonions”. Sakarya University Journal of Science, c. 23, sy. 5, 2019, ss. 731-5, doi:10.16984/saufenbilder.525320.
Vancouver Özkoç Öztürk A. On Generalized Tribonacci Octonions. SAUJS. 2019;23(5):731-5.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.