Araştırma Makalesi
BibTex RIS Kaynak Göster

On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube

Yıl 2019, , 1154 - 1162, 01.12.2019
https://doi.org/10.16984/saufenbilder.581542

Öz

In this study, an
experimental investigation was carried out to improve the energy absorption
capability of the circular aluminum tubes. For this purpose, different specimen
configurations such as PVC foam-filled, empty hybrid (strengthened with CFRP)
and PVC foam-filled hybrid tubes were prepared and tested under axial
compression. It is noted from the experiments that the contribution of foam
filling maximized when it was used with CFRP together. The results revealed
that energy absorption capacity (EAC) of the foam-filled hybrid tube was 2.7
times of the base tube. Moreover, the specific energy absorption (SEA) value
enhanced almost 70% compared to that of the base tube and reached 34.9 J/gr.

Destekleyen Kurum

TUBITAK

Proje Numarası

115M583

Teşekkür

The work described in this paper is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 115M583.

Kaynakça

  • A. Pugsley, “The large-scale crumpling of thin cylindrical columns,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, no. 1, pp. 1–9, 1960.
  • S. R. Reid, T. Y. Reddy, and M. D. Gray, “Static and dynamic axial crushing of foam-filled sheet metal tubes,” International Journal of Mechanical Sciences, vol. 28, no. 5, pp. 295–322, 1986.
  • D. Al Galib and A. Limam, “Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes,” Thin-Walled Structures, vol. 42, no. 8, pp. 1103–1137, 2004.
  • A. A. Singace, H. Elsobky, and T. Y. Reddy, “On the eccentricity factor in the progressive crushing of tubes,” International Journal of Solids and Structures, vol. 32, no. 24, pp. 3589–3602, 1995.
  • A. A. Alghamdi, “Collapsible impact energy absorbers: an overview,” Thin-Walled Structures, vol. 39, no. 2, pp. 189–213, 2001.
  • J. Zhang, N. Kikuchi, V. Li, A. Yee, and G. Nusholtz, “Constitutive modeling of polymeric foam material subjected to dynamic crash loading,” International Journal of Impact Engineering, vol. 21, no. 5, pp. 369–386, 2002.
  • S. A. Meguid, M. S. Attia, and A. Monfort, “On the crush behaviour of ultralight foam-filled structures,” Materials & Design, vol. 25, pp. 183–189, 2004.
  • A. K. Toksoy and M. Güden, “The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes,” Thin-Walled Structures, vol. 43, no. 2, pp. 333–350, 2005.
  • R. A. Alia, Z. W. Guan, A. K. Haldar, and W. J. Cantwell, “A numerical study of the energy-absorption characteristics of metal polymer foams,” Journal of Sandwich Structures & Materials, vol. 18, no. 5, pp. 597–623, 2016.
  • H. C. Kim, D. K. Shin, J. J. Lee, and J. B. Kwon, “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application,” Composite Structure, vol. 112, pp. 1–10, 2014.
  • Q. Liu, J. Ma, Z. He, Z. Hu, and D. Hui, “Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes,” Composites Part B: Engineering, vol.121, pp. 134–144, 2017.
  • M. R. Bambach, M. Elchalakani, and X. L. Zhao, “Composite steel – CFRP SHS tubes under axial impact,” Composite Structures, vol. 87, no. 3, pp. 282–292, 2009.
  • M. Guden, S. Yüksel, A. Taşdemirci, and M. Tanoğlu, “Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes,” Composite Structures, vol. 81, no. 4, pp. 480–490, 2007.
  • P. Taylor, N. Swaminathan, and R. C. Averill, “Contribution of failure mechanisms to crush energy absorption in a composite tube,” Mechanics of Advanced Materials and Structures, vol. 13, no. 1, pp. 51–59, 2006.
  • M. R. Bambach and M. Elchalakani, “Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation,” vol. 45, pp. 159–170, 2007.
  • P. Thornton, “Energy absorption by foam filled structures,” SAE Technical Paper Series, 1980.
  • T. Y. Reddy and R. J. Wall, “Axial compression of foam-filled thin-walled circular tubes,” International Journal of Impact Engineering, vol. 7, no. 2, pp. 151–166, 1988.
  • M. Seitzberger, F. G. Rammerstorfer, H. P. Degischer, and R. Gradinger, “Crushing of axially compressed steel tubes filled with aluminium foam,” Acta Mechanica, vol. 125, no. 1, pp. 93–105, 1997.
  • H. R. Zarei and M. Kroger, “Optimization of the foam-filled aluminum tubes for crush box application,” Thin-Walled Structures, vol. 46, no. 2, pp. 214–221, 2008.
  • A. Darvizeh, M. Darvizeh, R. Ansari, and A. Meshkinzar, “Effect of low density, low strength polyurethane foam on the energy absorption characteristics of circumferentially grooved thick-walled circular tubes,” Thin-Walled Structures, vol. 71, pp. 81–90, 2013.
  • M. Güden, A. K. Toksoy, and H. Kavi, “Experimental investigation of interaction effects in foam-filled thin-walled aluminum tubes,” Journal of Materials Science, vol. 41, no. 19, pp. 6417–6424, 2006.
  • S. R. Guillow, G. Lu, and R. H. Grzebieta, “Quasi-static axial compression of thin-walled circular aluminium tubes,” International Journal of Mechanical Sciences, vol. 43, no. 9, pp. 2103–2123, 2001.
  • S. R. Reid and T. Y. Reddy, “Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section,” International Journal of Mechanical Sciences, vol. 28, no. 9, pp. 623–637, 1986.
Yıl 2019, , 1154 - 1162, 01.12.2019
https://doi.org/10.16984/saufenbilder.581542

Öz

Proje Numarası

115M583

Kaynakça

  • A. Pugsley, “The large-scale crumpling of thin cylindrical columns,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, no. 1, pp. 1–9, 1960.
  • S. R. Reid, T. Y. Reddy, and M. D. Gray, “Static and dynamic axial crushing of foam-filled sheet metal tubes,” International Journal of Mechanical Sciences, vol. 28, no. 5, pp. 295–322, 1986.
  • D. Al Galib and A. Limam, “Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes,” Thin-Walled Structures, vol. 42, no. 8, pp. 1103–1137, 2004.
  • A. A. Singace, H. Elsobky, and T. Y. Reddy, “On the eccentricity factor in the progressive crushing of tubes,” International Journal of Solids and Structures, vol. 32, no. 24, pp. 3589–3602, 1995.
  • A. A. Alghamdi, “Collapsible impact energy absorbers: an overview,” Thin-Walled Structures, vol. 39, no. 2, pp. 189–213, 2001.
  • J. Zhang, N. Kikuchi, V. Li, A. Yee, and G. Nusholtz, “Constitutive modeling of polymeric foam material subjected to dynamic crash loading,” International Journal of Impact Engineering, vol. 21, no. 5, pp. 369–386, 2002.
  • S. A. Meguid, M. S. Attia, and A. Monfort, “On the crush behaviour of ultralight foam-filled structures,” Materials & Design, vol. 25, pp. 183–189, 2004.
  • A. K. Toksoy and M. Güden, “The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes,” Thin-Walled Structures, vol. 43, no. 2, pp. 333–350, 2005.
  • R. A. Alia, Z. W. Guan, A. K. Haldar, and W. J. Cantwell, “A numerical study of the energy-absorption characteristics of metal polymer foams,” Journal of Sandwich Structures & Materials, vol. 18, no. 5, pp. 597–623, 2016.
  • H. C. Kim, D. K. Shin, J. J. Lee, and J. B. Kwon, “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application,” Composite Structure, vol. 112, pp. 1–10, 2014.
  • Q. Liu, J. Ma, Z. He, Z. Hu, and D. Hui, “Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes,” Composites Part B: Engineering, vol.121, pp. 134–144, 2017.
  • M. R. Bambach, M. Elchalakani, and X. L. Zhao, “Composite steel – CFRP SHS tubes under axial impact,” Composite Structures, vol. 87, no. 3, pp. 282–292, 2009.
  • M. Guden, S. Yüksel, A. Taşdemirci, and M. Tanoğlu, “Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes,” Composite Structures, vol. 81, no. 4, pp. 480–490, 2007.
  • P. Taylor, N. Swaminathan, and R. C. Averill, “Contribution of failure mechanisms to crush energy absorption in a composite tube,” Mechanics of Advanced Materials and Structures, vol. 13, no. 1, pp. 51–59, 2006.
  • M. R. Bambach and M. Elchalakani, “Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation,” vol. 45, pp. 159–170, 2007.
  • P. Thornton, “Energy absorption by foam filled structures,” SAE Technical Paper Series, 1980.
  • T. Y. Reddy and R. J. Wall, “Axial compression of foam-filled thin-walled circular tubes,” International Journal of Impact Engineering, vol. 7, no. 2, pp. 151–166, 1988.
  • M. Seitzberger, F. G. Rammerstorfer, H. P. Degischer, and R. Gradinger, “Crushing of axially compressed steel tubes filled with aluminium foam,” Acta Mechanica, vol. 125, no. 1, pp. 93–105, 1997.
  • H. R. Zarei and M. Kroger, “Optimization of the foam-filled aluminum tubes for crush box application,” Thin-Walled Structures, vol. 46, no. 2, pp. 214–221, 2008.
  • A. Darvizeh, M. Darvizeh, R. Ansari, and A. Meshkinzar, “Effect of low density, low strength polyurethane foam on the energy absorption characteristics of circumferentially grooved thick-walled circular tubes,” Thin-Walled Structures, vol. 71, pp. 81–90, 2013.
  • M. Güden, A. K. Toksoy, and H. Kavi, “Experimental investigation of interaction effects in foam-filled thin-walled aluminum tubes,” Journal of Materials Science, vol. 41, no. 19, pp. 6417–6424, 2006.
  • S. R. Guillow, G. Lu, and R. H. Grzebieta, “Quasi-static axial compression of thin-walled circular aluminium tubes,” International Journal of Mechanical Sciences, vol. 43, no. 9, pp. 2103–2123, 2001.
  • S. R. Reid and T. Y. Reddy, “Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section,” International Journal of Mechanical Sciences, vol. 28, no. 9, pp. 623–637, 1986.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Muhammet Muaz Yalçın 0000-0003-4818-7591

Kenan Genel 0000-0003-0994-2806

Proje Numarası 115M583
Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 24 Haziran 2019
Kabul Tarihi 9 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Yalçın, M. M., & Genel, K. (2019). On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube. Sakarya University Journal of Science, 23(6), 1154-1162. https://doi.org/10.16984/saufenbilder.581542
AMA Yalçın MM, Genel K. On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube. SAUJS. Aralık 2019;23(6):1154-1162. doi:10.16984/saufenbilder.581542
Chicago Yalçın, Muhammet Muaz, ve Kenan Genel. “On the Axial Crush Performance of PVC Foam-Filled aluminum/CFRP Hybrid Circular Tube”. Sakarya University Journal of Science 23, sy. 6 (Aralık 2019): 1154-62. https://doi.org/10.16984/saufenbilder.581542.
EndNote Yalçın MM, Genel K (01 Aralık 2019) On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube. Sakarya University Journal of Science 23 6 1154–1162.
IEEE M. M. Yalçın ve K. Genel, “On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube”, SAUJS, c. 23, sy. 6, ss. 1154–1162, 2019, doi: 10.16984/saufenbilder.581542.
ISNAD Yalçın, Muhammet Muaz - Genel, Kenan. “On the Axial Crush Performance of PVC Foam-Filled aluminum/CFRP Hybrid Circular Tube”. Sakarya University Journal of Science 23/6 (Aralık 2019), 1154-1162. https://doi.org/10.16984/saufenbilder.581542.
JAMA Yalçın MM, Genel K. On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube. SAUJS. 2019;23:1154–1162.
MLA Yalçın, Muhammet Muaz ve Kenan Genel. “On the Axial Crush Performance of PVC Foam-Filled aluminum/CFRP Hybrid Circular Tube”. Sakarya University Journal of Science, c. 23, sy. 6, 2019, ss. 1154-62, doi:10.16984/saufenbilder.581542.
Vancouver Yalçın MM, Genel K. On the axial crush performance of PVC foam-filled aluminum/CFRP hybrid circular tube. SAUJS. 2019;23(6):1154-62.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.