Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir boyutlu (1D) 5-nitroisoftalat Cu(II) ve Cd(II)-koordinasyon polimerlerinin hidrotermal sentezi ve karakterizasyonu

Yıl 2018, Cilt: 22 Sayı: 3, 870 - 879, 01.06.2018
https://doi.org/10.16984/saufenbilder.325582

Öz

 5-nitroisoftalik asit (5-nipH2) ve
1-metilimidazol (1-meim) ligantları ile iki yeni 1D Cu(II) ve Cd(II)
koordinasyon polimeri, {[Cu(µ-5-nip)(1-meim)
2(H2O)]∙2H2O}n
(
1) ve {[Cd(µ3-5-nip)(1-meim)(H2O)]∙H2O}n
(
2) hidrotermal yöntemle sentezlendi
ve yapıları elementel analiz, IR spektroskopisi ve tek kristal X-ışınları kırınım
yöntemiyle aydınlatıldı. X-ışınları analiz sonuçlarına göre 5-nitroisoftalat ligantı
her iki komplekste de köprü ligantı olarak hareket etmiş ve komplekslerin bir
boyutlu yapısı meydana gelmiştir. Her iki komplekste de 5-nip ligantının farklı
bağlanma biçimi sergilediği tespit edilmiştir. Komplekslerin 2D ve 3D
supramoleküler yapıları
O−H···O hidrojen
bağları ve π···π etkileşimleri ile oluşmuştur.
2 kompleksinde, D4 su kümesi bulunmaktadır. Ayrıca, komplekslerin
termal, fotolüminesans ve optik özellikleri de detaylı şekilde çalışılmıştır
.

Kaynakça

  • [1] Q.-Y. Yang, K. Li, J. Luo, M. Pan, and C.-Y. Su, “A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties,” Chemical Communications, vol. 47, no. 14, pp. 4234-4236, 2011.
  • [2] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, “Metal–organic framework materials as chemical sensors,” Chemical Reviews, vol. 112, no. 2, pp. 1105-1125, 2011.
  • [3] M. Yoon, R. Srirambalaji, and K. Kim, “Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis,” Chemical Reviews, vol. 112, no. 2, pp. 1196-1231, 2011.
  • [4] M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, and C.-S. Liu, “Divergent kinetic and thermodynamic hydration of a porous Cu (II) coordination polymer with exclusive CO2 sorption selectivity,” Journal of the American Chemical Society, vol. 136, no. 31, pp. 10906-10909, 2014.
  • [5] Z. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, and S. M. Cohen, “Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 920-925, 2016.
  • [6] E. Haque, J. W. Jun, and S. H. Jhung, “Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235),” Journal of Hazardous materials, vol. 185, no. 1, pp. 507-511, 2011.
  • [7] S. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, and S. Kitagawa, “Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons,” Journal of the American Chemical Society, vol. 134, no. 24, pp. 9852-9855, 2012.
  • [8] G.-L. Wen, Y.-Y. Wang, W.-H. Zhang, C. Ren, R.-T. Liu, and Q.-Z. Shi, “Self-assembled coordination polymers of V-shaped bis (pyridyl) thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands,” CrystEngComm, vol. 12, no. 4, pp. 1238-1251, 2010.
  • [9] D. Sun, G.-G. Luo, N. Zhang, J.-H. Chen, R.-B. Huang, L.-R. Lin, and L.-S. Zheng, “Influence of dicarboxylic acids on self-assembly process: Syntheses and structural characterization of new Ag (I) complexes derived from mixed ligands,” Polyhedron, vol. 28, no. 14, pp. 2983-2988, 2009.
  • [10] R. García-Zarracino, J. Ramos-Quiñones, and H. Höpfl, “Self-assembly of dialkyltin (IV) moieties and aromatic dicarboxylates to complexes with a polymeric or a discrete trinuclear macrocyclic structure in the solid state and a mixture of fast interchanging cyclooligomeric structures in solution,” Inorganic chemistry, vol. 42, no. 12, pp. 3835-3845, 2003.
  • [11] S. M. Lo, S. S. Chui, L.-Y. Shek, Z. Lin, X. X. Zhang, G.-h. Wen, and I. D. Williams, “Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I− Copper-II Dimer Units:[Cu4{1,4-C6H4 (COO)2}3(4,4‘-bipy)2]n,” Journal of the American Chemical Society, vol. 122, no. 26, pp. 6293-6294, 2000.
  • [12] F. Luo, M.-S. Wang, M.-B. Luo, G.-M. Sun, Y.-M. Song, P.-X. Li, and G.-C. Guo, “Functionalizing the pore wall of chiral porous metal–organic frameworks by distinct –H, –OH, –NH2, –NO2,–COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission,” Chemical Communications, vol. 48, no. 48, pp. 5989-5991, 2012.
  • [13] L. Qin, Y.-H. Li, P.-J. Ma, and G.-H. Cui, “Exploring the effect of chain length of bridging ligands in cobalt (II) coordination polymers based on flexible bis (5,6-dimethylbenzimidazole) ligands: synthesis, crystal structures, fluorescence and catalytic properties,” Journal of Molecular Structure, vol. 1051, pp. 215-220, 2013.
  • [14] P. Sun, S. Zhao, Z. Yang, B. Li, and B. Wu, “Two Unusual Two‐dimensional (4,4) Network Cadmium Coordination Polymers Based on Flexible Bis (triazole) and Rigid Benzenedicarboxylate Co‐ligands,” Chinese Journal of Chemistry, vol. 30, no. 8, pp. 1813-1818, 2012.
  • [15] Q. Chen, X. Zhu, J.-G. Ding, B.-L. Li, and H.-Y. Li, “Syntheses, structures and properties of three cobalt coordination polymers based on flexible bis (triazole) and 5-nitroisophthalate coligands,” Journal of Molecular Structure, vol. 1038, pp. 194-199, 2013.
  • [16] D. K. Maity, B. Bhattacharya, A. Halder, A. Das, and D. Ghoshal, “Construction of diverse dimensionality in eight coordination polymers of bivalent metal ions using 5-nitroisophthalate and different linear N,N′-donor linkers,” Polyhedron, vol. 102, pp. 634-642, 2015.
  • [17] D.-S. Li, P. Zhang, J. Zhao, Z.-F. Fang, M. Du, K. Zou, and Y.-Q. Mu, “Two unique entangling Cd(II)-coordination frameworks constructed by square Cd4-building blocks and auxiliary N, N′-donor ligands,” Crystal Growth & Design, vol. 12, no. 4, pp. 1697-1702, 2012.
  • [18] G. M. Sheldrick, “SHELXT–Integrated space-group and crystal-structure determination,” Acta Crystallographica Section A: Foundations and Advances, vol. 71, no. 1, pp. 3-8, 2015.
  • [19] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: a complete structure solution, refinement and analysis program,” Journal of Applied Crystallography, vol. 42, no. 2, pp. 339-341, 2009.
  • [20] G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 64, no. 1, pp. 112-122, 2008. [21] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. v. d. Streek, “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453-457, 2006.
  • [22] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper (II) perchlorate,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1349-1356, 1984.
  • [23] J. Li, R.-T. Wu, and H.-B. Li, “A raremesh of trees'(mot) net: poly [aquahemi [μ4-1, 6-bis (1,2,4-triazol-1-yl)hexane](μ2-5-nitroisophthalato)cadmium(II)],” Acta Crystallographica Section C: Crystal Structure Communications, vol. 67, no. 8, pp. m284-m286, 2011.
  • [24] J. W. Ye, D. Li, K. Q. Ye, Y. Liu, Y. F. Zhao, and P. Zhang, “Synthesis, Structures and Properties of Four Coordination Polymers Constructed from 5‐Nitroisophthalate and Benzimidazole Ligand,” Zeitschrift für anorganische und allgemeine Chemie, vol. 634, no. 2, pp. 345-351, 2008.
  • [25] F. Guo, B. Zhu, G. Xu, M. Zhang, X. Zhang, and J. Zhang, “Tuning structural topologies of five photoluminescent Cd (II) coordination polymers through modifying the substitute group of organic ligand,” Journal of Solid State Chemistry, vol. 199, pp. 42-48, 2013.
  • [26] M. Arıcı, O. Z. Yeşilel, E. Acar, and N. Dege, “Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids,” Polyhedron, vol. 127, pp. 293-301, 2017.
  • [27] M. Arıcı, O. Z. Yeşilel, and O. Büyükgüngör, “Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis (imidazol-1yl) benzene linkers: Synthesis, luminescence detection of acetone and optical properties,” Journal of Solid State Chemistry, vol. 249, pp. 141-148, 2017.

Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers

Yıl 2018, Cilt: 22 Sayı: 3, 870 - 879, 01.06.2018
https://doi.org/10.16984/saufenbilder.325582

Öz

Two new one dimensional (1D) Cu(II) and Cd(II)-coordination
polymers, namely {[Cu(µ-5-nip)(1-meim)2(H2O)]∙2H2O}n
(1) and {[Cd(µ3-5-nip)(1-meim)(H2O)]∙H2O}n
(2), (5-nip= 5-nitroisophthalate,
1-meim= 1-methylimidazole) were synthesized by hydrothermal method with
5-nitroisophthalic acid and 1-methylimidazole. They were characterized by
elemental analysis, IR spectroscopy and single crystal X-ray diffraction. X-ray
analysis results showed that 5-nip acted as a bridging ligand in both complexes
and 1D chains of the complexes occurred. In the complexes, 5-nip ligand displayed
two different coordination modes. 2D and 3D supramolecular structures of the
complexes were generated through O−H···O hydrogen
bonding and π··· π interactions. Moreover, thermal, photoluminescence
and optic properties were studied in detail.

Kaynakça

  • [1] Q.-Y. Yang, K. Li, J. Luo, M. Pan, and C.-Y. Su, “A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties,” Chemical Communications, vol. 47, no. 14, pp. 4234-4236, 2011.
  • [2] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, “Metal–organic framework materials as chemical sensors,” Chemical Reviews, vol. 112, no. 2, pp. 1105-1125, 2011.
  • [3] M. Yoon, R. Srirambalaji, and K. Kim, “Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis,” Chemical Reviews, vol. 112, no. 2, pp. 1196-1231, 2011.
  • [4] M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, and C.-S. Liu, “Divergent kinetic and thermodynamic hydration of a porous Cu (II) coordination polymer with exclusive CO2 sorption selectivity,” Journal of the American Chemical Society, vol. 136, no. 31, pp. 10906-10909, 2014.
  • [5] Z. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, and S. M. Cohen, “Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 920-925, 2016.
  • [6] E. Haque, J. W. Jun, and S. H. Jhung, “Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235),” Journal of Hazardous materials, vol. 185, no. 1, pp. 507-511, 2011.
  • [7] S. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, and S. Kitagawa, “Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons,” Journal of the American Chemical Society, vol. 134, no. 24, pp. 9852-9855, 2012.
  • [8] G.-L. Wen, Y.-Y. Wang, W.-H. Zhang, C. Ren, R.-T. Liu, and Q.-Z. Shi, “Self-assembled coordination polymers of V-shaped bis (pyridyl) thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands,” CrystEngComm, vol. 12, no. 4, pp. 1238-1251, 2010.
  • [9] D. Sun, G.-G. Luo, N. Zhang, J.-H. Chen, R.-B. Huang, L.-R. Lin, and L.-S. Zheng, “Influence of dicarboxylic acids on self-assembly process: Syntheses and structural characterization of new Ag (I) complexes derived from mixed ligands,” Polyhedron, vol. 28, no. 14, pp. 2983-2988, 2009.
  • [10] R. García-Zarracino, J. Ramos-Quiñones, and H. Höpfl, “Self-assembly of dialkyltin (IV) moieties and aromatic dicarboxylates to complexes with a polymeric or a discrete trinuclear macrocyclic structure in the solid state and a mixture of fast interchanging cyclooligomeric structures in solution,” Inorganic chemistry, vol. 42, no. 12, pp. 3835-3845, 2003.
  • [11] S. M. Lo, S. S. Chui, L.-Y. Shek, Z. Lin, X. X. Zhang, G.-h. Wen, and I. D. Williams, “Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I− Copper-II Dimer Units:[Cu4{1,4-C6H4 (COO)2}3(4,4‘-bipy)2]n,” Journal of the American Chemical Society, vol. 122, no. 26, pp. 6293-6294, 2000.
  • [12] F. Luo, M.-S. Wang, M.-B. Luo, G.-M. Sun, Y.-M. Song, P.-X. Li, and G.-C. Guo, “Functionalizing the pore wall of chiral porous metal–organic frameworks by distinct –H, –OH, –NH2, –NO2,–COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission,” Chemical Communications, vol. 48, no. 48, pp. 5989-5991, 2012.
  • [13] L. Qin, Y.-H. Li, P.-J. Ma, and G.-H. Cui, “Exploring the effect of chain length of bridging ligands in cobalt (II) coordination polymers based on flexible bis (5,6-dimethylbenzimidazole) ligands: synthesis, crystal structures, fluorescence and catalytic properties,” Journal of Molecular Structure, vol. 1051, pp. 215-220, 2013.
  • [14] P. Sun, S. Zhao, Z. Yang, B. Li, and B. Wu, “Two Unusual Two‐dimensional (4,4) Network Cadmium Coordination Polymers Based on Flexible Bis (triazole) and Rigid Benzenedicarboxylate Co‐ligands,” Chinese Journal of Chemistry, vol. 30, no. 8, pp. 1813-1818, 2012.
  • [15] Q. Chen, X. Zhu, J.-G. Ding, B.-L. Li, and H.-Y. Li, “Syntheses, structures and properties of three cobalt coordination polymers based on flexible bis (triazole) and 5-nitroisophthalate coligands,” Journal of Molecular Structure, vol. 1038, pp. 194-199, 2013.
  • [16] D. K. Maity, B. Bhattacharya, A. Halder, A. Das, and D. Ghoshal, “Construction of diverse dimensionality in eight coordination polymers of bivalent metal ions using 5-nitroisophthalate and different linear N,N′-donor linkers,” Polyhedron, vol. 102, pp. 634-642, 2015.
  • [17] D.-S. Li, P. Zhang, J. Zhao, Z.-F. Fang, M. Du, K. Zou, and Y.-Q. Mu, “Two unique entangling Cd(II)-coordination frameworks constructed by square Cd4-building blocks and auxiliary N, N′-donor ligands,” Crystal Growth & Design, vol. 12, no. 4, pp. 1697-1702, 2012.
  • [18] G. M. Sheldrick, “SHELXT–Integrated space-group and crystal-structure determination,” Acta Crystallographica Section A: Foundations and Advances, vol. 71, no. 1, pp. 3-8, 2015.
  • [19] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: a complete structure solution, refinement and analysis program,” Journal of Applied Crystallography, vol. 42, no. 2, pp. 339-341, 2009.
  • [20] G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 64, no. 1, pp. 112-122, 2008. [21] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. v. d. Streek, “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453-457, 2006.
  • [22] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper (II) perchlorate,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1349-1356, 1984.
  • [23] J. Li, R.-T. Wu, and H.-B. Li, “A raremesh of trees'(mot) net: poly [aquahemi [μ4-1, 6-bis (1,2,4-triazol-1-yl)hexane](μ2-5-nitroisophthalato)cadmium(II)],” Acta Crystallographica Section C: Crystal Structure Communications, vol. 67, no. 8, pp. m284-m286, 2011.
  • [24] J. W. Ye, D. Li, K. Q. Ye, Y. Liu, Y. F. Zhao, and P. Zhang, “Synthesis, Structures and Properties of Four Coordination Polymers Constructed from 5‐Nitroisophthalate and Benzimidazole Ligand,” Zeitschrift für anorganische und allgemeine Chemie, vol. 634, no. 2, pp. 345-351, 2008.
  • [25] F. Guo, B. Zhu, G. Xu, M. Zhang, X. Zhang, and J. Zhang, “Tuning structural topologies of five photoluminescent Cd (II) coordination polymers through modifying the substitute group of organic ligand,” Journal of Solid State Chemistry, vol. 199, pp. 42-48, 2013.
  • [26] M. Arıcı, O. Z. Yeşilel, E. Acar, and N. Dege, “Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids,” Polyhedron, vol. 127, pp. 293-301, 2017.
  • [27] M. Arıcı, O. Z. Yeşilel, and O. Büyükgüngör, “Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis (imidazol-1yl) benzene linkers: Synthesis, luminescence detection of acetone and optical properties,” Journal of Solid State Chemistry, vol. 249, pp. 141-148, 2017.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mürsel Arıcı

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 3 Temmuz 2017
Kabul Tarihi 13 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 3

Kaynak Göster

APA Arıcı, M. (2018). Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. Sakarya University Journal of Science, 22(3), 870-879. https://doi.org/10.16984/saufenbilder.325582
AMA Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. Haziran 2018;22(3):870-879. doi:10.16984/saufenbilder.325582
Chicago Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science 22, sy. 3 (Haziran 2018): 870-79. https://doi.org/10.16984/saufenbilder.325582.
EndNote Arıcı M (01 Haziran 2018) Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. Sakarya University Journal of Science 22 3 870–879.
IEEE M. Arıcı, “Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers”, SAUJS, c. 22, sy. 3, ss. 870–879, 2018, doi: 10.16984/saufenbilder.325582.
ISNAD Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science 22/3 (Haziran 2018), 870-879. https://doi.org/10.16984/saufenbilder.325582.
JAMA Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. 2018;22:870–879.
MLA Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science, c. 22, sy. 3, 2018, ss. 870-9, doi:10.16984/saufenbilder.325582.
Vancouver Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. 2018;22(3):870-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.