Araştırma Makalesi
BibTex RIS Kaynak Göster

Üç Boyutlu q-Bernstein-Chlodowsky Polinomları İle Yaklaşım

Yıl 2018, Cilt: 22 Sayı: 6, 1774 - 1786, 01.12.2018
https://doi.org/10.16984/saufenbilder.348912

Öz

 Bu
çalışmada düzgün dört yüzlü olmayan bir bölge üzerinde üç boyutlu Bernstein-Chlodowsky
polinomlarını ve bu operatörün q-analoğunu tanıtacağız. Bu lineer pozitif
operatörlerin yaklaşım özellikleri ve genelleştirmeleri yapılacaktır.
Operatörün yakınsaklık hızı süreklilik modülü anlamında hesaplanacaktır.

Kaynakça

  • Referans1 G.M.Philips, “On Generalized Bernstein Polynomials”, in Numerical Analysis: D.F. Griffits, G.A. Watson Eds, World Scientific Singapore, pp. 263-269, 1996.
  • Referans2 H. Karsli and V. Gupta, “Some Approximation Properties of q-Chlodowsky Operators”, Applied Mathematics and Computation, vol. 195, pp. 220–229, 2008.
  • Referans3 I. Buyukyazici, “One the Approximation Properties of Two-Dimensional q-Bernstein-Chlodowsky Polynomials”, Mathematical Communications vol. 14, no. 2, pp. 255-269, 2009.
  • Referans4 I. Buyukyazici and E. Ibikli, “The Approximation Properties of Generalized Bernstein-Chlodowsky Polynomials of Two Variables”, Applied Mathematics and Computation vol. 156, pp. 367–380, 2004.
  • Referans5 A.K. Gazanfer, “Weighted Approximation Of Continuous Functions Of Three Variables in a Tetrahedron With Variable Boundary By Bernstein-Chlodowsky Polynomials”, Ph. D. Thesis, Graduate School of Natural and Applied Sciences, Bulent Ecevit Univ., Zonguldak Turkey, 2015.

Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials

Yıl 2018, Cilt: 22 Sayı: 6, 1774 - 1786, 01.12.2018
https://doi.org/10.16984/saufenbilder.348912

Öz

In the present paper we introduce positive linear three-dimensional
Bernstein-Chlodowsky polynomials on a non-tetrahedron domain and we get their
q-analogue. We obtain aproximation properties for these positive linear operators
and their generalizations in this work. The rate of convergence of this operators
is calculated by means of the modulus of continuity.

Kaynakça

  • Referans1 G.M.Philips, “On Generalized Bernstein Polynomials”, in Numerical Analysis: D.F. Griffits, G.A. Watson Eds, World Scientific Singapore, pp. 263-269, 1996.
  • Referans2 H. Karsli and V. Gupta, “Some Approximation Properties of q-Chlodowsky Operators”, Applied Mathematics and Computation, vol. 195, pp. 220–229, 2008.
  • Referans3 I. Buyukyazici, “One the Approximation Properties of Two-Dimensional q-Bernstein-Chlodowsky Polynomials”, Mathematical Communications vol. 14, no. 2, pp. 255-269, 2009.
  • Referans4 I. Buyukyazici and E. Ibikli, “The Approximation Properties of Generalized Bernstein-Chlodowsky Polynomials of Two Variables”, Applied Mathematics and Computation vol. 156, pp. 367–380, 2004.
  • Referans5 A.K. Gazanfer, “Weighted Approximation Of Continuous Functions Of Three Variables in a Tetrahedron With Variable Boundary By Bernstein-Chlodowsky Polynomials”, Ph. D. Thesis, Graduate School of Natural and Applied Sciences, Bulent Ecevit Univ., Zonguldak Turkey, 2015.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Nazmiye Gönül Bilgin

Merve Çetinkaya Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 2 Kasım 2017
Kabul Tarihi 21 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 6

Kaynak Göster

APA Gönül Bilgin, N., & Çetinkaya, M. (2018). Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials. Sakarya University Journal of Science, 22(6), 1774-1786. https://doi.org/10.16984/saufenbilder.348912
AMA Gönül Bilgin N, Çetinkaya M. Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials. SAUJS. Aralık 2018;22(6):1774-1786. doi:10.16984/saufenbilder.348912
Chicago Gönül Bilgin, Nazmiye, ve Merve Çetinkaya. “Approximation By Three-Dimensional Q-Bernstein-Chlodowsky Polynomials”. Sakarya University Journal of Science 22, sy. 6 (Aralık 2018): 1774-86. https://doi.org/10.16984/saufenbilder.348912.
EndNote Gönül Bilgin N, Çetinkaya M (01 Aralık 2018) Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials. Sakarya University Journal of Science 22 6 1774–1786.
IEEE N. Gönül Bilgin ve M. Çetinkaya, “Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials”, SAUJS, c. 22, sy. 6, ss. 1774–1786, 2018, doi: 10.16984/saufenbilder.348912.
ISNAD Gönül Bilgin, Nazmiye - Çetinkaya, Merve. “Approximation By Three-Dimensional Q-Bernstein-Chlodowsky Polynomials”. Sakarya University Journal of Science 22/6 (Aralık 2018), 1774-1786. https://doi.org/10.16984/saufenbilder.348912.
JAMA Gönül Bilgin N, Çetinkaya M. Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials. SAUJS. 2018;22:1774–1786.
MLA Gönül Bilgin, Nazmiye ve Merve Çetinkaya. “Approximation By Three-Dimensional Q-Bernstein-Chlodowsky Polynomials”. Sakarya University Journal of Science, c. 22, sy. 6, 2018, ss. 1774-86, doi:10.16984/saufenbilder.348912.
Vancouver Gönül Bilgin N, Çetinkaya M. Approximation By Three-Dimensional q-Bernstein-Chlodowsky Polynomials. SAUJS. 2018;22(6):1774-86.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.