Araştırma Makalesi
BibTex RIS Kaynak Göster

A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators

Yıl 2018, Cilt: 22 Sayı: 6, 1836 - 1841, 01.12.2018
https://doi.org/10.16984/saufenbilder.428697

Öz


Kaynakça

  • [1] J. Musielak, “On some approximation problems in modular spaces”, In: Constructive Function Theory, Proceedings of InternationalConference Varna, 1-5 June, 1981, Publication House of Bulgarian Academic of Sciences, Sofia, pp. 181-189, 1983.
  • [2] C. Bardaro, H. Karsli and G. Vinti, “On pointwise convergence of linear integral operators with homogeneous kernels”, Integral Transforms and Special Functions, 19(6), (2008), 429–439.
  • [3] C. Bardaro, H. Karsli and G. Vinti, “Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems”, Appl. Anal., Vol. 90, Nos. 3–4, 463–47, 2011
  • [4] H. Karsli, “Convergence and rate of convergence by nonlinear singular integral operators on two parameters”, Appl. Anal., 85, 781-791, 2006.
  • [5] T. Swiderski and E. Wachnicki, “Nonlinear singular integrals depending on two parameters”, Comment. Math., 40, pp. 181-189, 2000.
  • [6] J. Musielak, “Approximation by nonlinear singular integral operators in generalized Orlicz spaces”, Comment. Math. Prace Mat., 31, pp. 79—88, 1991.
  • [7] C. Bardaro and G. Vinti, “Approximation by nonlinear integral operators in some modular function spaces, Ann. Polon. Math., 63, pp.173-182, 1996.
  • [8] C. Bardaro, J. Musielak, and G. Vinti, “Nonlinear integral operators and applications”, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, Walter de Gruyter, Publ., Berlin-New York, 2003.
  • [9] C. Bardaro and I. Mantellini, “Pointwise convergence theorems for nonlinear Mellin convolution operators”, Int.J.Pure Appl. Math., 27(4), 431-447, 2006.
  • [10] C. Bardaro, G. Vinti and H. Karslı, “On pointwise convergence of linear integral operators with homogeneous kernels”, Integral Transform Sec. Funct., 19(6), pp. 429-439, 2008.
  • [11] H. Karsli, “On approximation properties of non-convolution type nonlinear operators”, Anal. Theory Appl. 26 (2), 140-152, 2010.
  • [12] G. Uysal, M. Menekse Yilmaz and E. Ibikli, “On pointwise convergence of bivariate nonlinear singular integral operators”, Kuwait Journal of Science, 44(2):46-57, 2017.
  • [13] B. Rydzewska, “Approximation des fonctions de deux variables par des integrales singulieres doubles”, Fasc. Math., 8, pp. 35--45 (in French), 1974.
  • [14] S. Esen Almali, “On approximation properties of certain multidimensional nonlinear integrals”, Journal of NonlinearSciences and Applications, (9)5, 3090-3097, 2016.
  • [15] P. L. Butzer and R. J., Nessel, Fourier Analysis and Approximation, Academic Press, New York, London, 1971.
  • [16] M. Yilmaz Menekse,. “A study on convergence of nonconvolution type double singular integral operators”, New Trends Math. Sci., 4 (4) 67-78, 2016.
  • [17] R. Taberski, “On double integrals and Fourier Series” Ann. Polon. Math. 15, pp. 97-115, 1964.
Yıl 2018, Cilt: 22 Sayı: 6, 1836 - 1841, 01.12.2018
https://doi.org/10.16984/saufenbilder.428697

Öz

Kaynakça

  • [1] J. Musielak, “On some approximation problems in modular spaces”, In: Constructive Function Theory, Proceedings of InternationalConference Varna, 1-5 June, 1981, Publication House of Bulgarian Academic of Sciences, Sofia, pp. 181-189, 1983.
  • [2] C. Bardaro, H. Karsli and G. Vinti, “On pointwise convergence of linear integral operators with homogeneous kernels”, Integral Transforms and Special Functions, 19(6), (2008), 429–439.
  • [3] C. Bardaro, H. Karsli and G. Vinti, “Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems”, Appl. Anal., Vol. 90, Nos. 3–4, 463–47, 2011
  • [4] H. Karsli, “Convergence and rate of convergence by nonlinear singular integral operators on two parameters”, Appl. Anal., 85, 781-791, 2006.
  • [5] T. Swiderski and E. Wachnicki, “Nonlinear singular integrals depending on two parameters”, Comment. Math., 40, pp. 181-189, 2000.
  • [6] J. Musielak, “Approximation by nonlinear singular integral operators in generalized Orlicz spaces”, Comment. Math. Prace Mat., 31, pp. 79—88, 1991.
  • [7] C. Bardaro and G. Vinti, “Approximation by nonlinear integral operators in some modular function spaces, Ann. Polon. Math., 63, pp.173-182, 1996.
  • [8] C. Bardaro, J. Musielak, and G. Vinti, “Nonlinear integral operators and applications”, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, Walter de Gruyter, Publ., Berlin-New York, 2003.
  • [9] C. Bardaro and I. Mantellini, “Pointwise convergence theorems for nonlinear Mellin convolution operators”, Int.J.Pure Appl. Math., 27(4), 431-447, 2006.
  • [10] C. Bardaro, G. Vinti and H. Karslı, “On pointwise convergence of linear integral operators with homogeneous kernels”, Integral Transform Sec. Funct., 19(6), pp. 429-439, 2008.
  • [11] H. Karsli, “On approximation properties of non-convolution type nonlinear operators”, Anal. Theory Appl. 26 (2), 140-152, 2010.
  • [12] G. Uysal, M. Menekse Yilmaz and E. Ibikli, “On pointwise convergence of bivariate nonlinear singular integral operators”, Kuwait Journal of Science, 44(2):46-57, 2017.
  • [13] B. Rydzewska, “Approximation des fonctions de deux variables par des integrales singulieres doubles”, Fasc. Math., 8, pp. 35--45 (in French), 1974.
  • [14] S. Esen Almali, “On approximation properties of certain multidimensional nonlinear integrals”, Journal of NonlinearSciences and Applications, (9)5, 3090-3097, 2016.
  • [15] P. L. Butzer and R. J., Nessel, Fourier Analysis and Approximation, Academic Press, New York, London, 1971.
  • [16] M. Yilmaz Menekse,. “A study on convergence of nonconvolution type double singular integral operators”, New Trends Math. Sci., 4 (4) 67-78, 2016.
  • [17] R. Taberski, “On double integrals and Fourier Series” Ann. Polon. Math. 15, pp. 97-115, 1964.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mine Menekşe Yılmaz 0000-0002-7263-9757

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 30 Mayıs 2018
Kabul Tarihi 4 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 6

Kaynak Göster

APA Menekşe Yılmaz, M. (2018). A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators. Sakarya University Journal of Science, 22(6), 1836-1841. https://doi.org/10.16984/saufenbilder.428697
AMA Menekşe Yılmaz M. A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators. SAUJS. Aralık 2018;22(6):1836-1841. doi:10.16984/saufenbilder.428697
Chicago Menekşe Yılmaz, Mine. “A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators”. Sakarya University Journal of Science 22, sy. 6 (Aralık 2018): 1836-41. https://doi.org/10.16984/saufenbilder.428697.
EndNote Menekşe Yılmaz M (01 Aralık 2018) A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators. Sakarya University Journal of Science 22 6 1836–1841.
IEEE M. Menekşe Yılmaz, “A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators”, SAUJS, c. 22, sy. 6, ss. 1836–1841, 2018, doi: 10.16984/saufenbilder.428697.
ISNAD Menekşe Yılmaz, Mine. “A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators”. Sakarya University Journal of Science 22/6 (Aralık 2018), 1836-1841. https://doi.org/10.16984/saufenbilder.428697.
JAMA Menekşe Yılmaz M. A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators. SAUJS. 2018;22:1836–1841.
MLA Menekşe Yılmaz, Mine. “A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators”. Sakarya University Journal of Science, c. 22, sy. 6, 2018, ss. 1836-41, doi:10.16984/saufenbilder.428697.
Vancouver Menekşe Yılmaz M. A Note On Convergence of Nonlinear General Type Two Dimensional Singular Integral Operators. SAUJS. 2018;22(6):1836-41.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.