Araştırma Makalesi
BibTex RIS Kaynak Göster

Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis

Yıl 2019, Cilt: 23 Sayı: 3, 368 - 381, 01.06.2019
https://doi.org/10.16984/saufenbilder.420679

Öz



Co-crystal of the N,N´-(((3,6-dichloro-9H-carbazole-1,8-diyl)bis(azanediyl))bis(carbonothioyl))bis(2,2-dimethylpropanamide)
as a carbazole-based thiourea derivative (CBT)
with acetic acid (AcOH) was
prepared and its molecular structure examined using
the single crystal X-ray diffraction study and the Hirshfeld surface analysis.
This co-crystal was designed to explore the supramolecular synthons and
intermolecular interactions diversity between the components of co-crystal. The
analysis of the crystal structure and packing revealed that the CBT:AcOH co-crystal
are formed by a strong O–H
S and
C-H
···O hydrogen bonding interactions between components of
co-crystal. In addition, its’ structure is further stabilized by strong C-H
···π
stacking interactions and N-H
···O and N-H···S homosynthons
between CBT molecules. The Hirshfeld surfaces and associated
two-dimensional fingerprint plots of the
co-crystal were also analyzed to clarify the nature of the hydrogen bond
interactions and close intermolecular interactions in the crystal structure.
The Hirshfeld surfaces and the associated two-dimensional fingerprint plots
analysis revealed that the majority of close contacts forming supramolecular
structure were associated with relatively weak interactions such as H
···H, C···H and N···H. So, it can be said that these interactions play a major role
in molecular crystal packing.

Kaynakça

  • [1]. C. J. Janiak, “A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands,” Journal of the Chemical Society, Dalton Transactions, vol. 21, pp. 3885-3896, 2000.
  • [2]. G. R. Desiraju, “C–H⋯O and other weak hydrogen bonds. From crystal engineering to virtual screening,” Chemical Communications, vol. 24, pp. 2995-3001, 2005.
  • [3]. K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad and I. A. Razak, “New supramolecular co-crystal of 2-amino-5-chloropyridine with 3- methylbenzoic acids: Syntheses, structural characterization, Hirshfeld surfaces and quantum chemical investigations,” Journal of Molecular Structure, vol. 1099, pp. 246-256, 2015.
  • [4]. L. Wang, R. A. Friesner and B. J. Berne, “Correction to “Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2),” The Journal of Physical Chemistry B, vol. 114, pp. 7294-7309, 2010.
  • [5]. P. A. Wood, F.H. Allen and E. Pidcock, “Hydrogen-bond directionality at the donor H atom—analysis of interaction energies and database statistics,” CrystEngComm, vol. 11, pp. 1563-1571, 2009.
  • [6]. G. R. Desiraju,”Reflections on the Hydrogen Bond in Crystal Engineering,” Crystal Growth & Design, vol. 11, pp. 896-898, 2011.
  • [7]. K. Aoki, M. Nakagawa, T. Seki and K. Ichimura, “Self-assembly of amphoteric azopyridine carboxylic acids Ⅱ: aspect ratio control of anisotropic self-assembled fibers by tuning the π– π stacking ınteraction,” Bulletin of the Chemical Society of Japan, vol. 75, 2533-2539, 2002.
  • [8]. M. Ma and D. Bong, “Determinants of Cyanuric Acid and Melamine Assembly in Water,” Langmuir, vol. 27, 8841-8853, 2011.
  • [9]. J. Janczak, “Supramolecular solid-state architectures formed by co-crystallization of melamine and 2-, 3- and 4-chlorophenylacetic acids,” Journal of Molecular Structure, vol. 1125, pp. 493-502, 2016.
  • [10]. M. S. Cunha, C. E. P. Ribeiro, C. C. Correa and R. Diniz, ” The Hirshfeld surface of three new isonicotinylhydrazine co-crystals: Comparison of hydrogen bonds and crystal structures,” Journal of Molecular Structure, vol. 1150, pp. 586-594, 2017.
  • [11]. G. P. Stahly, “A survey of cocrystals reported prior to 2000,” Crystal Growth & Design, Vol. 9, No. 10, pp. 4212-4229, 2009.
  • [12]. C. B. Aakeröy, M. E. Fasulo and J. Desper “Co-crystal or salt: does ıt really matter?,” Molecular Pharmaceutics, Vol.4, No. 3, pp 317-322, 2007.
  • [13]. M. L. Peterson, M. B. Hickey, M. J. Zaworotko and Ö. Almarsson, ” Expanding the scope of crystal form evaluation in pharmaceutical science,” Journal of Pharmaceutical Sciences, Vol.9, No. 3, pp 317-326, 2006.
  • [14]. E. Nauha, E. Kolehmaninen and M. Nissinen, “Packing incentives and a reliable N–H/N–pyridine synthon in co-crystallization of bipyridines with two agrochemical actives,” CrystEngComm, vol. 13, No. 21, pp. 6531-6537, 2011.
  • [15]. B. Chattopadhyay, S. Ghosh, S. Mondal, M. Mukherjee and A. K. Mukherjee, “Structural study of three o-hydroxyacetophenone derivatives using X-ray powder diffraction: interplay of weak intermolecular interactions,” CrystEngComm, vol. 14, No. 3, pp. 837-846, 2012.
  • [16]. H. G. Brittain, “Co-crystal systems of pharmaceutical ınterest: 2011,” Crystal Growth & Design, Vol. 12, pp. 5823-5832, 2012.
  • [17]. N. J. Babu and A. Nangia, “Solubility advantage of amorphous drugs and pharmaceutical cocrystals,” Crystal Growth & Design, Vol. 11, No. 7, pp. 2662-2679, 2011.
  • [18]. R. Thakuria, A. Delori, W. Jones, M. P. Lipert, L. Roy and N. Rodriguez-Hornedo, “Pharmaceutical cocrystals and poorly soluble drugs,” International Journal of Pharmaceutics, Vol. 453, pp. 101–125, 2013.
  • [19]. R. Czerwonka, K. R. Reddy, E. Baum, H. J. Knölker, “First enantioselective total synthesis of neocarazostatin B, determination of its absolute configuration and transformation into carquinostatin A,” Chemical Communication, Vol. 0, pp. 711−713, 2006.
  • [20]. R. Forke, M. P. Krahl, T. Krause, G. Schlechtingen, H. J. Knölker, “Transition metals in organic synthesis, part 82. First total synthesis of methyl 6-methoxycarbazole- 3-carboxylate, glycomaurrol, the anti-TB active micromeline, and the furo[2,3-c] carbazole alkaloid eustifoline-D,” Synlett, Vol. 2, pp. 268−272, 2007.
  • [21]. O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. 42 (2009) 339-341.
  • [22]. L. Palatinus and G. Chapuis, Journal of Applied Crystallography, Vol. 40, pp. 786-790, 2007.
  • [23]. L. Palatinus, A. van der Lee. , Journal of Applied Crystallography, Vol. 41, pp. 975-984, 2008.
  • [24]. L. Palatinus, S. J. Prathapa. S. van Smaalen Journal of Applied Crystallography, Vol. 45, pp. 575-580, 2012.
  • [25]. G. M. Sheldrick, Acta Cryst. C71 (2015) 3-8. Vol. C71, pp. 3-8, 2015.
  • [26]. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017.
  • [27]. P. A. Gale, “Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing,” Chemical Communication, Vol. 0, pp. 4525-4540, 2008.
  • [28]. H. Arslan, “Metal katalizli oksidasyon reaksiyonları için ligand tasarım çalışmaları”. TUBITAK, Proje no: 112T322, (2012).
  • [29]. I. Gumus, “Yeni Karbazol Türevi Redoks Aktif Ligandların ve Metal Komplekslerinin Sentezi ve Karakterizasyonu”, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, (2014).
Yıl 2019, Cilt: 23 Sayı: 3, 368 - 381, 01.06.2019
https://doi.org/10.16984/saufenbilder.420679

Öz

Kaynakça

  • [1]. C. J. Janiak, “A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands,” Journal of the Chemical Society, Dalton Transactions, vol. 21, pp. 3885-3896, 2000.
  • [2]. G. R. Desiraju, “C–H⋯O and other weak hydrogen bonds. From crystal engineering to virtual screening,” Chemical Communications, vol. 24, pp. 2995-3001, 2005.
  • [3]. K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad and I. A. Razak, “New supramolecular co-crystal of 2-amino-5-chloropyridine with 3- methylbenzoic acids: Syntheses, structural characterization, Hirshfeld surfaces and quantum chemical investigations,” Journal of Molecular Structure, vol. 1099, pp. 246-256, 2015.
  • [4]. L. Wang, R. A. Friesner and B. J. Berne, “Correction to “Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2),” The Journal of Physical Chemistry B, vol. 114, pp. 7294-7309, 2010.
  • [5]. P. A. Wood, F.H. Allen and E. Pidcock, “Hydrogen-bond directionality at the donor H atom—analysis of interaction energies and database statistics,” CrystEngComm, vol. 11, pp. 1563-1571, 2009.
  • [6]. G. R. Desiraju,”Reflections on the Hydrogen Bond in Crystal Engineering,” Crystal Growth & Design, vol. 11, pp. 896-898, 2011.
  • [7]. K. Aoki, M. Nakagawa, T. Seki and K. Ichimura, “Self-assembly of amphoteric azopyridine carboxylic acids Ⅱ: aspect ratio control of anisotropic self-assembled fibers by tuning the π– π stacking ınteraction,” Bulletin of the Chemical Society of Japan, vol. 75, 2533-2539, 2002.
  • [8]. M. Ma and D. Bong, “Determinants of Cyanuric Acid and Melamine Assembly in Water,” Langmuir, vol. 27, 8841-8853, 2011.
  • [9]. J. Janczak, “Supramolecular solid-state architectures formed by co-crystallization of melamine and 2-, 3- and 4-chlorophenylacetic acids,” Journal of Molecular Structure, vol. 1125, pp. 493-502, 2016.
  • [10]. M. S. Cunha, C. E. P. Ribeiro, C. C. Correa and R. Diniz, ” The Hirshfeld surface of three new isonicotinylhydrazine co-crystals: Comparison of hydrogen bonds and crystal structures,” Journal of Molecular Structure, vol. 1150, pp. 586-594, 2017.
  • [11]. G. P. Stahly, “A survey of cocrystals reported prior to 2000,” Crystal Growth & Design, Vol. 9, No. 10, pp. 4212-4229, 2009.
  • [12]. C. B. Aakeröy, M. E. Fasulo and J. Desper “Co-crystal or salt: does ıt really matter?,” Molecular Pharmaceutics, Vol.4, No. 3, pp 317-322, 2007.
  • [13]. M. L. Peterson, M. B. Hickey, M. J. Zaworotko and Ö. Almarsson, ” Expanding the scope of crystal form evaluation in pharmaceutical science,” Journal of Pharmaceutical Sciences, Vol.9, No. 3, pp 317-326, 2006.
  • [14]. E. Nauha, E. Kolehmaninen and M. Nissinen, “Packing incentives and a reliable N–H/N–pyridine synthon in co-crystallization of bipyridines with two agrochemical actives,” CrystEngComm, vol. 13, No. 21, pp. 6531-6537, 2011.
  • [15]. B. Chattopadhyay, S. Ghosh, S. Mondal, M. Mukherjee and A. K. Mukherjee, “Structural study of three o-hydroxyacetophenone derivatives using X-ray powder diffraction: interplay of weak intermolecular interactions,” CrystEngComm, vol. 14, No. 3, pp. 837-846, 2012.
  • [16]. H. G. Brittain, “Co-crystal systems of pharmaceutical ınterest: 2011,” Crystal Growth & Design, Vol. 12, pp. 5823-5832, 2012.
  • [17]. N. J. Babu and A. Nangia, “Solubility advantage of amorphous drugs and pharmaceutical cocrystals,” Crystal Growth & Design, Vol. 11, No. 7, pp. 2662-2679, 2011.
  • [18]. R. Thakuria, A. Delori, W. Jones, M. P. Lipert, L. Roy and N. Rodriguez-Hornedo, “Pharmaceutical cocrystals and poorly soluble drugs,” International Journal of Pharmaceutics, Vol. 453, pp. 101–125, 2013.
  • [19]. R. Czerwonka, K. R. Reddy, E. Baum, H. J. Knölker, “First enantioselective total synthesis of neocarazostatin B, determination of its absolute configuration and transformation into carquinostatin A,” Chemical Communication, Vol. 0, pp. 711−713, 2006.
  • [20]. R. Forke, M. P. Krahl, T. Krause, G. Schlechtingen, H. J. Knölker, “Transition metals in organic synthesis, part 82. First total synthesis of methyl 6-methoxycarbazole- 3-carboxylate, glycomaurrol, the anti-TB active micromeline, and the furo[2,3-c] carbazole alkaloid eustifoline-D,” Synlett, Vol. 2, pp. 268−272, 2007.
  • [21]. O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. 42 (2009) 339-341.
  • [22]. L. Palatinus and G. Chapuis, Journal of Applied Crystallography, Vol. 40, pp. 786-790, 2007.
  • [23]. L. Palatinus, A. van der Lee. , Journal of Applied Crystallography, Vol. 41, pp. 975-984, 2008.
  • [24]. L. Palatinus, S. J. Prathapa. S. van Smaalen Journal of Applied Crystallography, Vol. 45, pp. 575-580, 2012.
  • [25]. G. M. Sheldrick, Acta Cryst. C71 (2015) 3-8. Vol. C71, pp. 3-8, 2015.
  • [26]. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017.
  • [27]. P. A. Gale, “Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing,” Chemical Communication, Vol. 0, pp. 4525-4540, 2008.
  • [28]. H. Arslan, “Metal katalizli oksidasyon reaksiyonları için ligand tasarım çalışmaları”. TUBITAK, Proje no: 112T322, (2012).
  • [29]. I. Gumus, “Yeni Karbazol Türevi Redoks Aktif Ligandların ve Metal Komplekslerinin Sentezi ve Karakterizasyonu”, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, (2014).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

İlkay Gumus 0000-0002-9398-0057

Yayımlanma Tarihi 1 Haziran 2019
Gönderilme Tarihi 3 Mayıs 2018
Kabul Tarihi 20 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 3

Kaynak Göster

APA Gumus, İ. (2019). Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis. Sakarya University Journal of Science, 23(3), 368-381. https://doi.org/10.16984/saufenbilder.420679
AMA Gumus İ. Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis. SAUJS. Haziran 2019;23(3):368-381. doi:10.16984/saufenbilder.420679
Chicago Gumus, İlkay. “Co-Crystal of Carbazole-Based Thiourea Derivative Compound With Acetic Acid: Crystallography and Hirshfeld Surface Analysis”. Sakarya University Journal of Science 23, sy. 3 (Haziran 2019): 368-81. https://doi.org/10.16984/saufenbilder.420679.
EndNote Gumus İ (01 Haziran 2019) Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis. Sakarya University Journal of Science 23 3 368–381.
IEEE İ. Gumus, “Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis”, SAUJS, c. 23, sy. 3, ss. 368–381, 2019, doi: 10.16984/saufenbilder.420679.
ISNAD Gumus, İlkay. “Co-Crystal of Carbazole-Based Thiourea Derivative Compound With Acetic Acid: Crystallography and Hirshfeld Surface Analysis”. Sakarya University Journal of Science 23/3 (Haziran 2019), 368-381. https://doi.org/10.16984/saufenbilder.420679.
JAMA Gumus İ. Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis. SAUJS. 2019;23:368–381.
MLA Gumus, İlkay. “Co-Crystal of Carbazole-Based Thiourea Derivative Compound With Acetic Acid: Crystallography and Hirshfeld Surface Analysis”. Sakarya University Journal of Science, c. 23, sy. 3, 2019, ss. 368-81, doi:10.16984/saufenbilder.420679.
Vancouver Gumus İ. Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis. SAUJS. 2019;23(3):368-81.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.