Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 23 Sayı: 5, 831 - 839, 01.10.2019
https://doi.org/10.16984/saufenbilder.526830

Öz

 

Kaynakça

  • H.K. Onnes, Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (2011) 113-115.
  • T. Turgay, G. Yildirim, Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure, Sakarya University Journal of Science, 22 (2018) 1211-1220.
  • A.T Ulgen, T. Turgay, C. Terzioglu, G. Yildirim, M. Oz, Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality, pair wave function and polaronic states, J. Alloy. Compd. 764 (2018) 755–766.
  • S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders, Physica C 463–465 (2007) 464–467.
  • M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor, Physica C 372 (2002) 1657–1663.
  • J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors, Appl. Supercond. 3 (1995) 469–482.
  • K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7-y single crystals, Curr. Appl. Phys. 11 (2011) 1020–1023.
  • M. Runde, Application of high-Tc superconductors in aluminum electrolysis plants, IEEE T. Appl. Supercond. 5 (1995) 813–816.
  • A.T. Ulgen, I. Belenli, The Effect of Fe Diffusion on Some Physical and Superconducting Properties of MgB2, J. Supercond. Nov. Magn. 30 (2017) 1089–1095.
  • S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, Development of a high-efficiency conduction cooling technology for SMES coils, IEEE T. Appl. Supercond. 23 (2013) 5602804–5602807.
  • H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method, J. Appl. Phys. 111 (2012) 103910.
  • A.T. Ulgen, I. Belenli, Sintering time dependence of iron diffusion in MgB2and its effect on superconducting properties, AIP Conference Proceedings, 1815 (2017) 040008.
  • T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump, IEEE T. Appl. Supercond. 21 (2011) 3581–3586.
  • S.B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt, A.T. Ulgen, M. Dogruer, G. Yildirim, A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features, J. Alloy. Compd. 722 (2019) 388–398.
  • A.T. Ulgen, F. Karaboga, M. Karakaya, R. Podila, A.M. Rao, I. Belenli, Improved transport properties of MgB2 superconducting round wires via minute addition of gold nanoparticles, Ceram. Int. 45 (2019) 1031–1036.
  • F. Karaboga, A.T. Ulgen, H. Yetis, M. Akdogan, M. Pakdil, I. Belenli, Mechanical properties and uniformity of Fe-MgB2 wires upon various wire drawing steps, Mat. Sci. Eng. A-Struct. 721 (2018) 89–95.
  • W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd ed., Wiley-VCH Verlag, Weinheim, (2004).
  • A.T. Ulgen, I. Belenli, Time-Dependent Diffusion Coefficient of Fe in MgB2 Superconductors, J. Supercond. Nov. Magn. 30 (2017) 3367–3375.
  • K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids, Mat. Chem. Phys. 63 (2000) 145–152.
  • R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr, J. Supercond. Nov. Magn. 24 (2011) 1947–1956.
  • A.A. Elmustafa, D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solid. 5 (2003) 357–381.
  • M.M. Pasare, M.I. Petrescu, A theoretical model for the true hardness determination of Ni-P/SiC electroplated composites, Mater. Plast. 45 (2008) 87–90.
  • F. Poehl, S. Huth, W. Theisen, Detection of the indentation-size-effect (ISE) and surface hardening by analysis of the loading curvature C, Int. J. Solids Struct. 84 (2016) 160–166.
  • R.K. Abu Al-Rub, Prediction of micro and nanoindentation size effect from conical and pyramidal indentation, Mech. Mater. 39 (2007) 787–802.

Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates

Yıl 2019, Cilt: 23 Sayı: 5, 831 - 839, 01.10.2019
https://doi.org/10.16984/saufenbilder.526830

Öz

The primary aim of this work is to examine the crucial variations of key
mechanical design performance properties and mechanical characterization of
Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy superconducting ceramic cuprate materials with the aid of Vickers
hardness measurements performed at the different applied indentation test loads
between the value of 0.245 N and 2.940 N. In this study, all the materials are
prepared within the molar ratios of 0≤x≤0.10 by using the ceramic method in the
atmospheric air conditions. The experimental measurement results obtained show
that the increment of the aliovalent Sr/Ti partial substitution level in the
Bi-2212 crystal structure regresses remarkably the key design mechanical
performances such as the mechanical strength, stability, stiffness, critical
stress, toughness, flexural strengths and mechanical durability. This is
attributed to the fact that the existence of Ti impurity in the Bi-2212 main
matrix leads to the enhancement in the problematic defects, stress raisers and
crack initiation sites based on the crack-producing omnipresent flaws.
Accordingly, the propagation of the problematic defects accelerates
considerably at relative lower indentation test loads applied, and the
problematic defects locate easily in their critical propagation speed. All in
all, the defects formed in the crystal matrix by the Ti inclusions are out of
control, and the Sr/Ti partial substituted
Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy superconducting compounds are much easier broken. Additionally, it is
noted that every material produced show the typical indentation size effect but
in the reduction trend with enhancing the Sr/Ti partial substitution level. The
load-dependent mechanical parameters such as Young’s modulus, yield strength,
fracture toughness, brittleness index and elastic stiffness coefficients are
also discussed in the text.

Kaynakça

  • H.K. Onnes, Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (2011) 113-115.
  • T. Turgay, G. Yildirim, Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure, Sakarya University Journal of Science, 22 (2018) 1211-1220.
  • A.T Ulgen, T. Turgay, C. Terzioglu, G. Yildirim, M. Oz, Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality, pair wave function and polaronic states, J. Alloy. Compd. 764 (2018) 755–766.
  • S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders, Physica C 463–465 (2007) 464–467.
  • M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor, Physica C 372 (2002) 1657–1663.
  • J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors, Appl. Supercond. 3 (1995) 469–482.
  • K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7-y single crystals, Curr. Appl. Phys. 11 (2011) 1020–1023.
  • M. Runde, Application of high-Tc superconductors in aluminum electrolysis plants, IEEE T. Appl. Supercond. 5 (1995) 813–816.
  • A.T. Ulgen, I. Belenli, The Effect of Fe Diffusion on Some Physical and Superconducting Properties of MgB2, J. Supercond. Nov. Magn. 30 (2017) 1089–1095.
  • S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, Development of a high-efficiency conduction cooling technology for SMES coils, IEEE T. Appl. Supercond. 23 (2013) 5602804–5602807.
  • H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method, J. Appl. Phys. 111 (2012) 103910.
  • A.T. Ulgen, I. Belenli, Sintering time dependence of iron diffusion in MgB2and its effect on superconducting properties, AIP Conference Proceedings, 1815 (2017) 040008.
  • T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump, IEEE T. Appl. Supercond. 21 (2011) 3581–3586.
  • S.B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt, A.T. Ulgen, M. Dogruer, G. Yildirim, A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features, J. Alloy. Compd. 722 (2019) 388–398.
  • A.T. Ulgen, F. Karaboga, M. Karakaya, R. Podila, A.M. Rao, I. Belenli, Improved transport properties of MgB2 superconducting round wires via minute addition of gold nanoparticles, Ceram. Int. 45 (2019) 1031–1036.
  • F. Karaboga, A.T. Ulgen, H. Yetis, M. Akdogan, M. Pakdil, I. Belenli, Mechanical properties and uniformity of Fe-MgB2 wires upon various wire drawing steps, Mat. Sci. Eng. A-Struct. 721 (2018) 89–95.
  • W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd ed., Wiley-VCH Verlag, Weinheim, (2004).
  • A.T. Ulgen, I. Belenli, Time-Dependent Diffusion Coefficient of Fe in MgB2 Superconductors, J. Supercond. Nov. Magn. 30 (2017) 3367–3375.
  • K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids, Mat. Chem. Phys. 63 (2000) 145–152.
  • R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr, J. Supercond. Nov. Magn. 24 (2011) 1947–1956.
  • A.A. Elmustafa, D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solid. 5 (2003) 357–381.
  • M.M. Pasare, M.I. Petrescu, A theoretical model for the true hardness determination of Ni-P/SiC electroplated composites, Mater. Plast. 45 (2008) 87–90.
  • F. Poehl, S. Huth, W. Theisen, Detection of the indentation-size-effect (ISE) and surface hardening by analysis of the loading curvature C, Int. J. Solids Struct. 84 (2016) 160–166.
  • R.K. Abu Al-Rub, Prediction of micro and nanoindentation size effect from conical and pyramidal indentation, Mech. Mater. 39 (2007) 787–802.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Tahsin Turgay 0000-0003-0304-1097

Yusuf Zalaoğlu 0000-0003-2191-8112

Gürcan Yıldırım 0000-0002-5177-3703

Yayımlanma Tarihi 1 Ekim 2019
Gönderilme Tarihi 13 Şubat 2019
Kabul Tarihi 11 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 5

Kaynak Göster

APA Turgay, T., Zalaoğlu, Y., & Yıldırım, G. (2019). Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates. Sakarya University Journal of Science, 23(5), 831-839. https://doi.org/10.16984/saufenbilder.526830
AMA Turgay T, Zalaoğlu Y, Yıldırım G. Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates. SAUJS. Ekim 2019;23(5):831-839. doi:10.16984/saufenbilder.526830
Chicago Turgay, Tahsin, Yusuf Zalaoğlu, ve Gürcan Yıldırım. “Key Mechanical Design Performance Features and Mechanical Characterization of Poly-Crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates”. Sakarya University Journal of Science 23, sy. 5 (Ekim 2019): 831-39. https://doi.org/10.16984/saufenbilder.526830.
EndNote Turgay T, Zalaoğlu Y, Yıldırım G (01 Ekim 2019) Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates. Sakarya University Journal of Science 23 5 831–839.
IEEE T. Turgay, Y. Zalaoğlu, ve G. Yıldırım, “Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates”, SAUJS, c. 23, sy. 5, ss. 831–839, 2019, doi: 10.16984/saufenbilder.526830.
ISNAD Turgay, Tahsin vd. “Key Mechanical Design Performance Features and Mechanical Characterization of Poly-Crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates”. Sakarya University Journal of Science 23/5 (Ekim 2019), 831-839. https://doi.org/10.16984/saufenbilder.526830.
JAMA Turgay T, Zalaoğlu Y, Yıldırım G. Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates. SAUJS. 2019;23:831–839.
MLA Turgay, Tahsin vd. “Key Mechanical Design Performance Features and Mechanical Characterization of Poly-Crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates”. Sakarya University Journal of Science, c. 23, sy. 5, 2019, ss. 831-9, doi:10.16984/saufenbilder.526830.
Vancouver Turgay T, Zalaoğlu Y, Yıldırım G. Key mechanical Design Performance Features and Mechanical Characterization of Poly-crystallized Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy Superconducting Ceramic Cuprates. SAUJS. 2019;23(5):831-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.