Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 3, 735 - 740, 30.06.2021
https://doi.org/10.16984/saufenbilder.797337

Öz

Destekleyen Kurum

GAZİOSMANPAŞA ÜNİVERSİTESİ BAP KOORDİNATÖRLÜĞÜ

Proje Numarası

2017/95

Kaynakça

  • [1] C. M. Wayman, K. Otsuka, “Shape Memory Materials,” Cambridge University Press, 1998.
  • [2] R. D. Noebe, T. Biles, S. A. Padula, “NiTibased high temperature shape-memory alloys: properties, prospects, and potential applications, in ‘Advanced structural materials: properties, design optimization, and applications,” (ed. W. O. Soboyejo and T. S. Srivatsan); New York, Taylor & Francis Group, 2007.
  • [3] Q. Li, J. Li, G. Ma, X. Liu, D. Pana, “Influence of ω phase precipitation on mechanical performance and corrosion resistance of Ti–Nb–Zr alloy,” Material and Design, 11C, pp. 421-428, 2016.
  • [4] J. Wang, Q. Li, C. Xiong, Y. Li, B. Sun, “Effect of Zr on the martensitic transformation and the shape memory effect in Ti-Zr-Nb-Ta high-temperature shape memory alloys,” Journal of Alloys and Compounds, 737, pp. 672-677, 2018.
  • [5] X. Yi, Y. Wang, B. Sun, B. Cui, J. Liu, X. Meng, Z. Gao, W. Cai, L. Zhao, “Crystallization process and microstructural evolution of as-spun Ti-Ni-Zr alloy ribbon,” Journal of Alloys and Compounds, 762, pp. 62-66, 2018.
  • [6] C. Xiong, L. Yaoa, B. Yuan, W. Qu,, Y. Li, “Strain induced martensite stabilization and shape memory effect of Ti-20Zr–10Nb–4Ta alloy,” Materials Science&Engineering A, 658, pp. 28–32, 2016.
  • [7] O. Uzun, T. Karaaslan, M. Keskin, “Production and structure of rapidly solidified Al–Si alloys,” Turk J. Phys., 25:455–66, 2001.
  • [8] O. Uzun, T. Karaaslan, M. Göğebakan, M. Keskin, “Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt. % Si Alloys,” J. Alloys Compd., 376:149–57, 2004.
  • [9] Y. Kim, Y. Yun, T. Nam, “The effect of the melt spinning processing parameters on the solidification structures in Ti–30 at.% Ni–20 at.% Cu shape memory alloys,” Mater Sci Eng A., 438–440:545–8, 2006.
  • [10] H.Y. Kim, M. Mizutani, S. Miyazaki, “Crystallization process and shape memory properties of TieNieZr thin films,” Acta Mater., 57, 1920-1930, 2009.
  • [11] Y. Motemani, P. J. McCluskey, C. W. Zhao, M. J. Tan, “Analysis of Ti-Ni- Hf shape memory alloys by combinatorial nanocalorimetry,” Acta Mater. 59, 7602- 7614, 2011.
  • [12] Y. Y. Li, S. S. Cao, X. Ma, C. B. Ke, X. P. Zhang, “Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy,” Materials Science & Engineering A., 705, 273–281, 2017.
  • [13] S. Ergen, O. Uzun, F. Yılmaz, F. Kiliçaslan, “Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys,” Materials Characterization, 80, pp. 92-97, 2013.
  • [14] Ö. Bağ, F. Yılmaz, U. Kölemen, S. Ergen, C. Temiz and O. Uzun, “Transformational, microstructural and superelasticity characteristics of Ti–V–Al high temperature shape memory alloys with Zr addition,” Physica Scripta, Vol. 96, 8, 2021.

Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr

Yıl 2021, Cilt: 25 Sayı: 3, 735 - 740, 30.06.2021
https://doi.org/10.16984/saufenbilder.797337

Öz

In this study, the effects of Zr addition on phase transformation temperatures, microstructure of Ti-12V-4Al (wt. %) high temperature shape memory alloys (HTSMAs) manufactured using melt-spinning technique were investigated. During heating, differential scanning calorimetry (DSC) curves showed that austenite transformation temperature of Ti-12V-4Al (wt. %) melt-spun ribbon was single-stage transformation and Ti-12V-4Al-0.5Zr (wt. %) melt-spun ribbon was two-stage transformation. In the scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyzes, unveiled that the melt-spun ribbons consisted of martensite, austenite and R phases. Transmission electron microscopy (TEM) analysis showed that the thickness of martensite plates in ribbons was thinned by the addition of Zr.

Proje Numarası

2017/95

Kaynakça

  • [1] C. M. Wayman, K. Otsuka, “Shape Memory Materials,” Cambridge University Press, 1998.
  • [2] R. D. Noebe, T. Biles, S. A. Padula, “NiTibased high temperature shape-memory alloys: properties, prospects, and potential applications, in ‘Advanced structural materials: properties, design optimization, and applications,” (ed. W. O. Soboyejo and T. S. Srivatsan); New York, Taylor & Francis Group, 2007.
  • [3] Q. Li, J. Li, G. Ma, X. Liu, D. Pana, “Influence of ω phase precipitation on mechanical performance and corrosion resistance of Ti–Nb–Zr alloy,” Material and Design, 11C, pp. 421-428, 2016.
  • [4] J. Wang, Q. Li, C. Xiong, Y. Li, B. Sun, “Effect of Zr on the martensitic transformation and the shape memory effect in Ti-Zr-Nb-Ta high-temperature shape memory alloys,” Journal of Alloys and Compounds, 737, pp. 672-677, 2018.
  • [5] X. Yi, Y. Wang, B. Sun, B. Cui, J. Liu, X. Meng, Z. Gao, W. Cai, L. Zhao, “Crystallization process and microstructural evolution of as-spun Ti-Ni-Zr alloy ribbon,” Journal of Alloys and Compounds, 762, pp. 62-66, 2018.
  • [6] C. Xiong, L. Yaoa, B. Yuan, W. Qu,, Y. Li, “Strain induced martensite stabilization and shape memory effect of Ti-20Zr–10Nb–4Ta alloy,” Materials Science&Engineering A, 658, pp. 28–32, 2016.
  • [7] O. Uzun, T. Karaaslan, M. Keskin, “Production and structure of rapidly solidified Al–Si alloys,” Turk J. Phys., 25:455–66, 2001.
  • [8] O. Uzun, T. Karaaslan, M. Göğebakan, M. Keskin, “Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt. % Si Alloys,” J. Alloys Compd., 376:149–57, 2004.
  • [9] Y. Kim, Y. Yun, T. Nam, “The effect of the melt spinning processing parameters on the solidification structures in Ti–30 at.% Ni–20 at.% Cu shape memory alloys,” Mater Sci Eng A., 438–440:545–8, 2006.
  • [10] H.Y. Kim, M. Mizutani, S. Miyazaki, “Crystallization process and shape memory properties of TieNieZr thin films,” Acta Mater., 57, 1920-1930, 2009.
  • [11] Y. Motemani, P. J. McCluskey, C. W. Zhao, M. J. Tan, “Analysis of Ti-Ni- Hf shape memory alloys by combinatorial nanocalorimetry,” Acta Mater. 59, 7602- 7614, 2011.
  • [12] Y. Y. Li, S. S. Cao, X. Ma, C. B. Ke, X. P. Zhang, “Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy,” Materials Science & Engineering A., 705, 273–281, 2017.
  • [13] S. Ergen, O. Uzun, F. Yılmaz, F. Kiliçaslan, “Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys,” Materials Characterization, 80, pp. 92-97, 2013.
  • [14] Ö. Bağ, F. Yılmaz, U. Kölemen, S. Ergen, C. Temiz and O. Uzun, “Transformational, microstructural and superelasticity characteristics of Ti–V–Al high temperature shape memory alloys with Zr addition,” Physica Scripta, Vol. 96, 8, 2021.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Öznur Bağ 0000-0002-9944-8221

Fikret Yılmaz 0000-0002-1835-4961

Uğur Kölemen 0000-0001-9858-8823

Semra Ergen 0000-0002-5515-0933

Proje Numarası 2017/95
Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 21 Eylül 2020
Kabul Tarihi 23 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 3

Kaynak Göster

APA Bağ, Ö., Yılmaz, F., Kölemen, U., Ergen, S. (2021). Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr. Sakarya University Journal of Science, 25(3), 735-740. https://doi.org/10.16984/saufenbilder.797337
AMA Bağ Ö, Yılmaz F, Kölemen U, Ergen S. Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr. SAUJS. Haziran 2021;25(3):735-740. doi:10.16984/saufenbilder.797337
Chicago Bağ, Öznur, Fikret Yılmaz, Uğur Kölemen, ve Semra Ergen. “Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys With Addition of Zr”. Sakarya University Journal of Science 25, sy. 3 (Haziran 2021): 735-40. https://doi.org/10.16984/saufenbilder.797337.
EndNote Bağ Ö, Yılmaz F, Kölemen U, Ergen S (01 Haziran 2021) Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr. Sakarya University Journal of Science 25 3 735–740.
IEEE Ö. Bağ, F. Yılmaz, U. Kölemen, ve S. Ergen, “Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr”, SAUJS, c. 25, sy. 3, ss. 735–740, 2021, doi: 10.16984/saufenbilder.797337.
ISNAD Bağ, Öznur vd. “Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys With Addition of Zr”. Sakarya University Journal of Science 25/3 (Haziran 2021), 735-740. https://doi.org/10.16984/saufenbilder.797337.
JAMA Bağ Ö, Yılmaz F, Kölemen U, Ergen S. Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr. SAUJS. 2021;25:735–740.
MLA Bağ, Öznur vd. “Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys With Addition of Zr”. Sakarya University Journal of Science, c. 25, sy. 3, 2021, ss. 735-40, doi:10.16984/saufenbilder.797337.
Vancouver Bağ Ö, Yılmaz F, Kölemen U, Ergen S. Microstructures and Phase Transformations of Melt-Spun Ti-V-Al High Temperature Shape Memory Alloys with Addition of Zr. SAUJS. 2021;25(3):735-40.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.