Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 5, 1189 - 1196, 30.10.2021
https://doi.org/10.16984/saufenbilder.960842

Öz

Kaynakça

  • [1] H. Weyl, “Raum-Zeit-Materie”, J. Springer, 1918.
  • [2] A. G. Walker, “On Ruse's spaces of recurrent curvature,” Proc. Lond. Math., vol. 52, pp. 34-36, 1951.
  • [3] U. C. De and N. Guha, “On generalized recurrent manifolds,” J. National Academy of Math. India, vol. 9, pp. 85-92, 1991.
  • [4] K. Arslan, U. C. De, C. Murathan and A. Yıldız, “On generalized recurrent Riemannian manifolds,” Acta Math. Hungar., vol. 123 (1-2), pp. 27-39, 2009.
  • [5] T. Miyazawa, “On Riemannian space admitting some recurrent tensor,” Tru. Math. J., vol.2, pp. 11-18, 1996.
  • [6] U. C. De and A. K. Gazi, “On generalized concircularly recurrent manifolds,” Studia Scient. Math. Hungar., vol. 46(2), pp. 287- 296, 2009.
  • [7] E. M. Patterson, “Some theorems on Riccirecurrent spaces,” J. Lond. Math. Soc., vol. 27, pp. 287–295, 1952.
  • [8] U. C. De, N. Guha and D. Kamilya, “On generalized Ricci recurrent manifolds,” Tensor (NS), vol. 56, pp. 312–317, 1995.
  • [9] A. A. Shaikh, I. Roy and H. Kundu, “On some generalized recurrent manifolds”, Bull. Iranian Math. Soc., vol. 43(5), pp. 1209-1225, (2017).
  • [10] S. A. Uysal and H. B. Yılmaz, "Some Properties of Generalized Einstein Tensor for a Pseudo-Ricci Symmetric Manifold," Advances in Mathematical Physics, vol. 2020, Article ID 6831650, 4 pages, 2020.
  • [11] J. Kim, “On Almost Quasi Ricci Symmetric Manifolds,” Commun. Korean Math. Soc. Vol. 35, No. 2, pp. 603-611, 2020.
  • [12] E. Canfes, “On Generalized Recurrent Weyl Spaces and Wong's Conjecture,” Differential Geometry and Dynamical Systems, vol. 8, pp. 34-42, 2006.
  • [13] G. Gürpınar Arsan, G. Çivi Yıldırım, “Generalized concircular recurrent Weyl spaces,” Proceedings of the 4th International Colloquium Mathematics in Engineering and Numerical Physics, pp. 6- 8, 2006.
  • [14] U. C. De and A. K. Gazi, “On nearly quasi Einstein manifolds,” Novi Sad. J. Math., vol. 38(2), pp. 115–121, 2008.
  • [15] V. Hlavaty, “Theorie d'immersion d'une 𝑊𝑚 dans 𝑊𝑚,” Ann. Soc. Polon. Math., vol. 21, pp. 196-206, 1949.
  • [16] A. Norden, “Affinely Connected Spaces,” Nauka, Moscow, 1976.
  • [17] G. Zlatanov, “Nets in the n-dimensional Space of Weyl,” C. R. Aoad. Bulgare Sci., vol. 41, no. 10, pp 29-32, 1988.
  • [18] A. Özdeğer, “On sectional curvatures of Weyl manifolds,” Proc. Japan Acad, vol. 82A, no. 8, pp. 123-125, 2006.
  • [19] A. Özdeğer and Z. Şentürk, “Generalized Circles in Weyl spaces and their conformal mapping,” Publ. Math. Debrecen, vol. 60, no. 1-2, pp. 75-87, 2002.

On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds

Yıl 2021, Cilt: 25 Sayı: 5, 1189 - 1196, 30.10.2021
https://doi.org/10.16984/saufenbilder.960842

Öz

In the present work, generalized recurrent and generalized concircularly recurrent Weyl manifolds are examined. We define nearly quasi-Einstein Weyl manifolds and we proved that if a generalized recurrent or generalized concircularly recurrent Weyl manifold admits a special concircular vector field, then the manifold reduces to a nearly quasi-Einstein Weyl manifold. Also, some other results are presented.

Kaynakça

  • [1] H. Weyl, “Raum-Zeit-Materie”, J. Springer, 1918.
  • [2] A. G. Walker, “On Ruse's spaces of recurrent curvature,” Proc. Lond. Math., vol. 52, pp. 34-36, 1951.
  • [3] U. C. De and N. Guha, “On generalized recurrent manifolds,” J. National Academy of Math. India, vol. 9, pp. 85-92, 1991.
  • [4] K. Arslan, U. C. De, C. Murathan and A. Yıldız, “On generalized recurrent Riemannian manifolds,” Acta Math. Hungar., vol. 123 (1-2), pp. 27-39, 2009.
  • [5] T. Miyazawa, “On Riemannian space admitting some recurrent tensor,” Tru. Math. J., vol.2, pp. 11-18, 1996.
  • [6] U. C. De and A. K. Gazi, “On generalized concircularly recurrent manifolds,” Studia Scient. Math. Hungar., vol. 46(2), pp. 287- 296, 2009.
  • [7] E. M. Patterson, “Some theorems on Riccirecurrent spaces,” J. Lond. Math. Soc., vol. 27, pp. 287–295, 1952.
  • [8] U. C. De, N. Guha and D. Kamilya, “On generalized Ricci recurrent manifolds,” Tensor (NS), vol. 56, pp. 312–317, 1995.
  • [9] A. A. Shaikh, I. Roy and H. Kundu, “On some generalized recurrent manifolds”, Bull. Iranian Math. Soc., vol. 43(5), pp. 1209-1225, (2017).
  • [10] S. A. Uysal and H. B. Yılmaz, "Some Properties of Generalized Einstein Tensor for a Pseudo-Ricci Symmetric Manifold," Advances in Mathematical Physics, vol. 2020, Article ID 6831650, 4 pages, 2020.
  • [11] J. Kim, “On Almost Quasi Ricci Symmetric Manifolds,” Commun. Korean Math. Soc. Vol. 35, No. 2, pp. 603-611, 2020.
  • [12] E. Canfes, “On Generalized Recurrent Weyl Spaces and Wong's Conjecture,” Differential Geometry and Dynamical Systems, vol. 8, pp. 34-42, 2006.
  • [13] G. Gürpınar Arsan, G. Çivi Yıldırım, “Generalized concircular recurrent Weyl spaces,” Proceedings of the 4th International Colloquium Mathematics in Engineering and Numerical Physics, pp. 6- 8, 2006.
  • [14] U. C. De and A. K. Gazi, “On nearly quasi Einstein manifolds,” Novi Sad. J. Math., vol. 38(2), pp. 115–121, 2008.
  • [15] V. Hlavaty, “Theorie d'immersion d'une 𝑊𝑚 dans 𝑊𝑚,” Ann. Soc. Polon. Math., vol. 21, pp. 196-206, 1949.
  • [16] A. Norden, “Affinely Connected Spaces,” Nauka, Moscow, 1976.
  • [17] G. Zlatanov, “Nets in the n-dimensional Space of Weyl,” C. R. Aoad. Bulgare Sci., vol. 41, no. 10, pp 29-32, 1988.
  • [18] A. Özdeğer, “On sectional curvatures of Weyl manifolds,” Proc. Japan Acad, vol. 82A, no. 8, pp. 123-125, 2006.
  • [19] A. Özdeğer and Z. Şentürk, “Generalized Circles in Weyl spaces and their conformal mapping,” Publ. Math. Debrecen, vol. 60, no. 1-2, pp. 75-87, 2002.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

İlhan Gül 0000-0002-0929-3503

Yayımlanma Tarihi 30 Ekim 2021
Gönderilme Tarihi 1 Temmuz 2021
Kabul Tarihi 9 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 5

Kaynak Göster

APA Gül, İ. (2021). On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds. Sakarya University Journal of Science, 25(5), 1189-1196. https://doi.org/10.16984/saufenbilder.960842
AMA Gül İ. On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds. SAUJS. Ekim 2021;25(5):1189-1196. doi:10.16984/saufenbilder.960842
Chicago Gül, İlhan. “On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds”. Sakarya University Journal of Science 25, sy. 5 (Ekim 2021): 1189-96. https://doi.org/10.16984/saufenbilder.960842.
EndNote Gül İ (01 Ekim 2021) On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds. Sakarya University Journal of Science 25 5 1189–1196.
IEEE İ. Gül, “On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds”, SAUJS, c. 25, sy. 5, ss. 1189–1196, 2021, doi: 10.16984/saufenbilder.960842.
ISNAD Gül, İlhan. “On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds”. Sakarya University Journal of Science 25/5 (Ekim 2021), 1189-1196. https://doi.org/10.16984/saufenbilder.960842.
JAMA Gül İ. On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds. SAUJS. 2021;25:1189–1196.
MLA Gül, İlhan. “On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds”. Sakarya University Journal of Science, c. 25, sy. 5, 2021, ss. 1189-96, doi:10.16984/saufenbilder.960842.
Vancouver Gül İ. On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds. SAUJS. 2021;25(5):1189-96.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.