Sturm-Liouville equation on a finite interval together with boundary conditions arises from the infinitesimal, vertical vibrations of a string with the ends subject to various constraints. The coefficient (also called potential) function in the differential equation is in a close relationship with the density of the string. In this sense, the computation of solutions plays a rather important role in both mathematical and physical fields. In this study, asymptotic behaviors of the solutions for Sturm-Liouville problems associated with polynomially eigenparameter dependent boundary conditions are obtained when the potential function is real valued 𝑳𝟏- function on the interval (𝟎, 𝟏). Besides, the asymptotic formulae are given for the derivatives of the solutions.
Sturm-Liouville problem spectral parameter pontential function asymptotics
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 1 Aralık 2023 |
Yayımlanma Tarihi | 18 Aralık 2023 |
Gönderilme Tarihi | 28 Mayıs 2023 |
Kabul Tarihi | 31 Temmuz 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 27 Sayı: 6 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.