Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells

Yıl 2024, Cilt: 28 Sayı: 1, 195 - 203, 29.02.2024
https://doi.org/10.16984/saufenbilder.1339660

Öz

Prostate cancer is one of the most common cancer for men. Current therapies such as chemotherapy or radiotherapy non-spesifically affect cancerous cells. Current therapies need more targeted delivery approaches such as peptide. Asn-Gly-Arg (NGR) is a tool for cancer targeting therapy. To mimic more natural cancer microenvironment, peptide treatment approaches are examined in 3 Dimensional (D) hydrogels. GelMA is one of the hydrogels that permits to construct 3D microenvironment of PC3 prostate cancer cells. The goal of the study was to evaluate characteristic of GelMA to model prostate cancer environment and to determine the effects of NGR peptides for PC3 line. pH values of different concentrations NGR (1 µM, 10 µM and 100 µM)-GelMA were measured. To analyze biodegradation capacity of different concentrations NGR (1 µM, 10 µM and 100 µM)-GelMA, weigth measurements were performed. Live and Dead analysis was performed on days 1, 4, and 7. The findings revealed that GelMA hydrogels created a relatively stable and neutral pH, making them potentially valuable for drug delivery systems. Furthermore, the NGR-GelMA hydrogels incorporated exhibited the capacity to absorb liquids, resulting in an increase in weight. Notably, these hydrogels allowed for the observation of the dynamic 3D microenvironment of prostate cancer, which was influenced by the concentration of the targeted drug in the GelMA matrix. This suggests promising implications for developing targeted therapies for prostate cancer using GelMA-based drug delivery systems. As a conclusion, GelMA and NGR-GelMA hyrdogels may be useful platform for further studies to progress on prostate cancer treatment.

Destekleyen Kurum

TUBITAK

Proje Numarası

2209-B/1139B412200033

Kaynakça

  • [1] W. Bijoux, E. C. Duverger, S. Balbolia, P. J. Lamy, X. Rebillard, B. Tretarre, S. Cenee, F. Menegaux "Occupation and prostate Cancer risk: results from the epidemiological study of prostate cancer (EPICAP)," Journal of Occupational Medicine and Toxicology, vol. 17, no. 1, p. 5, 2022/02/07 2022.
  • [2] M. S. Litwin, H. J. Tan, "The Diagnosis and Treatment of Prostate Cancer: A Review," JAMA, vol. 317, no. 24, pp. 2532-2542, 2017.
  • [3] V. Sailer, G. Amsberg, S. Duensing, J. Kirfel, V. Lieb, E. Metzger, A. Offermann, K. Pantel, R. Schuele, H. Taubert, S. Wach, S. Perner, S. Werner, A. Aigner "Experimental in vitro, ex vivo and in vivo models in prostate cancer research," Nature Reviews Urology, vol. 20, no. 3, pp. 158-178, Mar 2023.
  • [4] M. Thomsen, L. Vitetta, "Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis," Integrative Cancer Therapies, vol. 17, no. 4, pp. 1027-1047, Dec 2018.
  • [5] K. Nurgali, R. T. Jagoe, R. Abalo, "Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?," Frontiers in Pharmacology, vol. 9, p. 245, 2018.
  • [6] Q. Zhang, L. Li, "Photodynamic combinational therapy in cancer treatment," Journal of the Balkan Union of Oncology, vol. 23, no. 3, pp. 561-567, May-Jun 2018.
  • [7] E. Nezir, M. P. Khalily, S. Gulyuz, S. Ozcubukcu, Ş. G. Küçükgüzel, O.Yilmaz, D. Telci, "Synthesis and evaluation of tumor-homing peptides for targeting prostate cancer," Amino Acids, vol. 53, no. 5, pp. 645-652, 2021/05/01 2021.
  • [8] T. You, Y. Ding, H. Chen, G. Song, L. Huang, M. Wang, X. Hua, "Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides," Journal of Hazardous Materials, vol. 425, p. 128011, 2022/03/05/ 2022.
  • [9] F. Curnis, G. Arrigoni, A. Sacchi, L. Fischetti, W. Arap, R. Pasqualini, A. Corti, "Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells," Cancer Research, vol. 62, no. 3, pp. 867-74, Feb 1 2002.
  • [10] L. Zhu, Z. Ding, X. Li, H. Wei, Y. Chen, "Research Progress of Radiolabeled Asn-Gly-Arg (NGR) Peptides for Imaging and Therapy," Molecular Imaging, vol. 19, p. 1536012120934957, Jan-Dec 2020.
  • [11] S. V. Garde, A. J. Forté, M. Ge, E. A. Lepekhin, C. J. Panchal, S. A. Rabbani, J. J. Wu, “Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects," Anti-Cancer Drugs, vol. 18, no. 10, pp. 1189-1200, 2007.
  • [12] Z. Zhang, L. Hou, L. Feng, S. Huang, M. Luo, S. Shao, X. Zhang, S. Gu, X. Zhao, "An antimicrobial peptide containing NGR motif has potent antitumor activity against CD13+ and CD13− tumor cells," Tumor Biology, vol. 36, no. 10, pp. 8167-8175, 2015/10/01 2015.
  • [13] J. Hoarau-Véchot, A. Rafii, C. Touboul, J. Pasquier, "Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?," International Journal of Molecular Sciences, vol. 19, no. 1, p. 181, 2018.
  • [14] Z. B. Yaralı Çevik, O. Karaman, N. Topaloğlu, "Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation," Biomaterials Advances, vol. 149, p. 213392, 2023/06/01/ 2023.
  • [15] Z. B. Yaralı Çevik, O. Karaman, N. Topaloğlu, "Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues," Journal of Photochemistry and Photobiology B: Biology, vol. 238, p. 112615, 2023/01/01/ 2023.
  • [16] Z. B. Yaralı, G. Onak, O. Karaman, "Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids," Tissue Engineering and Regenerative Medicine, vol. 17, no. 5, pp. 595-605, Oct 2020.
  • [17] H. Huang, Y. Ding, X. S. Sun, T. A. Nguyen, "Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells," PLoS One, vol. 8, no. 3, p. e59482, 2013.
  • [18] F. Gelain, Z. Luo, S. Zhang, "Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel," Chemistry Reviews, vol. 120, no. 24, pp. 13434-13460, Dec 23 2020.
  • [19] E. Kaemmerer, F. P. W. Melchels, B. M. Holzapfel, T. Meckel, D. W. Hutmacher, D. Loessner, "Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system," Acta Biomaterialia, vol. 10, no. 6, pp. 2551-2562, 2014/06/01/ 2014.
  • [20] M. Vigata, C. Meinert, S. Pahoff, N. Bock, D. W. Hutmacher, "Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel," Polymers (Basel), vol. 12, no. 2, Feb 24 2020.
  • [21] K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels," Biomaterials, vol. 73, pp. 254-71, Dec 2015.
  • [22] N. Bock, F. Forouz, L. Hipwood, J. Clegg, P. Jeffery, M. Gough, T. V. Wyngaard, C. Pyke, M. N. Adams, L. J. Bray, L. Croft, E. W. Thompson, T. Kryza, C. Meinert, "GelMA, Click-Chemistry Gelatin and Bioprinted Polyethylene Glycol-Based Hydrogels as 3D Ex Vivo Drug Testing Platforms for Patient-Derived Breast Cancer Organoids," Pharmaceutics, vol. 15, no. 1, Jan 12 2023.
  • [23] H. Wang, Y. Feng, B. An, W. Zhang, M. Sun, Z. Fang, W. Yuan, M. Khan, "Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering," Journal of Materials Science: Materials in Medicine, vol. 23, no. 6, pp. 1499-1510, 2012/06/01 2012.
  • [24] Q. Pan, R. Fan, R. Chen, J. Yuan, S. Chen B. Cheng, "Weakly acidic microenvironment of the wound bed boosting the efficacy of acidic fibroblast growth factor to promote skin regeneration," Frontiers in Bioengineering and Biotechnology, vol. 11, p. 1150819, 2023.
  • [25] M. Moghtaderi, S. Bazzazan, S. Bazzazan, G. Sorourian, M. Sorourian, Y. Akhavanzanjani, H. Noorbazargan, Q. Ren, "Encapsulation of Thymol in Gelatin Methacryloyl (GelMa)-Based Nanoniosome Enables Enhanced Antibiofilm Activity and Wound Healing," Pharmaceutics, vol. 15, no. 6, Jun 9 2023.
  • [26] K. Wang, Q. Fu, X. Chen, Y. Gao, K. Dong, "Preparation and characterization of pH-sensitive hydrogel for drug delivery system," RSC Advances, 10.1039/C2RA20989F vol. 2, no. 20, pp. 7772-7780, 2012.
  • [27] S. Lee, A. Shanti, "Effect of Exogenous pH on Cell Growth of Breast Cancer Cells," International Journal of Molecular Science, vol. 22, no. 18, Sep 14 2021.
  • [28] N. Raghunand, R. Martínez-Zaguilán, S. H. Wright, R. J. Gillies, "pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs," Biochemical Pharmacology, vol. 57, no. 9, pp. 1047-58, May 1 1999.
  • [29] Z. Gu, M. Chang, Y. Fan, Y. Shi, G. Lin, "NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel," Colloids and Surfaces B Biointerfaces, vol. 160, pp. 395-405, Dec 1 2017.
  • [30] Y. Piao, H. You, T. Xu, H. P. Bei, I. Z. Piwko, Y. Y. Kwan, X. Zhao, "Biomedical applications of gelatin methacryloyl hydrogels," Engineered Regeneration, vol. 2, pp. 47-56, 2021/01/01/ 2021.
  • [31] H. C. Shih, T. A. Lee, H. M. Wu, P. L. Ko, W. H. Liao, Y. C. Tung, "Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration under Combinations of Oxygen Gradients, Tensions, and Drug Treatments," Scientific Reports, vol. 9, no. 1, p. 8234, 2019/06/03 2019.
  • [32] K. Miri, H. G. Hosseinabadi, B. Cecen, S. Hassan, Y. S. Zhang, "Permeability mapping of gelatin methacryloyl hydrogels," Acta Biomaterials, vol. 77, pp. 38-47, Sep 1 2018.
  • [33] Valentinis, S. Porcellini, C. Asperti, M. Cota, D. Zhou, P. D. Matteo, G. Garau, C. Zucchelli, N. R. Avanzi, G. P. Rizzardi, M. Degano, G. Musco, C. Traversari, "Mechanism of Action of the Tumor Vessel Targeting Agent NGR-hTNF: Role of Both NGR Peptide and hTNF in Cell Binding and Signaling," International Journal of Molecular Science, vol. 20, no. 18, Sep 12 2019.
  • [34] Mohammadi-Farsani, M. Habibi-Roudkenar, M. Golkar, M. A. Shokrgozar, A. J. Najafabadi, H. KhanAhmad, S. Valiyari, S. Bouzari, "A-NGR fusion protein induces apoptosis in human cancer cells," Excli Journal, vol. 17, pp. 590-597, 2018.
Yıl 2024, Cilt: 28 Sayı: 1, 195 - 203, 29.02.2024
https://doi.org/10.16984/saufenbilder.1339660

Öz

Proje Numarası

2209-B/1139B412200033

Kaynakça

  • [1] W. Bijoux, E. C. Duverger, S. Balbolia, P. J. Lamy, X. Rebillard, B. Tretarre, S. Cenee, F. Menegaux "Occupation and prostate Cancer risk: results from the epidemiological study of prostate cancer (EPICAP)," Journal of Occupational Medicine and Toxicology, vol. 17, no. 1, p. 5, 2022/02/07 2022.
  • [2] M. S. Litwin, H. J. Tan, "The Diagnosis and Treatment of Prostate Cancer: A Review," JAMA, vol. 317, no. 24, pp. 2532-2542, 2017.
  • [3] V. Sailer, G. Amsberg, S. Duensing, J. Kirfel, V. Lieb, E. Metzger, A. Offermann, K. Pantel, R. Schuele, H. Taubert, S. Wach, S. Perner, S. Werner, A. Aigner "Experimental in vitro, ex vivo and in vivo models in prostate cancer research," Nature Reviews Urology, vol. 20, no. 3, pp. 158-178, Mar 2023.
  • [4] M. Thomsen, L. Vitetta, "Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis," Integrative Cancer Therapies, vol. 17, no. 4, pp. 1027-1047, Dec 2018.
  • [5] K. Nurgali, R. T. Jagoe, R. Abalo, "Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?," Frontiers in Pharmacology, vol. 9, p. 245, 2018.
  • [6] Q. Zhang, L. Li, "Photodynamic combinational therapy in cancer treatment," Journal of the Balkan Union of Oncology, vol. 23, no. 3, pp. 561-567, May-Jun 2018.
  • [7] E. Nezir, M. P. Khalily, S. Gulyuz, S. Ozcubukcu, Ş. G. Küçükgüzel, O.Yilmaz, D. Telci, "Synthesis and evaluation of tumor-homing peptides for targeting prostate cancer," Amino Acids, vol. 53, no. 5, pp. 645-652, 2021/05/01 2021.
  • [8] T. You, Y. Ding, H. Chen, G. Song, L. Huang, M. Wang, X. Hua, "Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides," Journal of Hazardous Materials, vol. 425, p. 128011, 2022/03/05/ 2022.
  • [9] F. Curnis, G. Arrigoni, A. Sacchi, L. Fischetti, W. Arap, R. Pasqualini, A. Corti, "Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells," Cancer Research, vol. 62, no. 3, pp. 867-74, Feb 1 2002.
  • [10] L. Zhu, Z. Ding, X. Li, H. Wei, Y. Chen, "Research Progress of Radiolabeled Asn-Gly-Arg (NGR) Peptides for Imaging and Therapy," Molecular Imaging, vol. 19, p. 1536012120934957, Jan-Dec 2020.
  • [11] S. V. Garde, A. J. Forté, M. Ge, E. A. Lepekhin, C. J. Panchal, S. A. Rabbani, J. J. Wu, “Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects," Anti-Cancer Drugs, vol. 18, no. 10, pp. 1189-1200, 2007.
  • [12] Z. Zhang, L. Hou, L. Feng, S. Huang, M. Luo, S. Shao, X. Zhang, S. Gu, X. Zhao, "An antimicrobial peptide containing NGR motif has potent antitumor activity against CD13+ and CD13− tumor cells," Tumor Biology, vol. 36, no. 10, pp. 8167-8175, 2015/10/01 2015.
  • [13] J. Hoarau-Véchot, A. Rafii, C. Touboul, J. Pasquier, "Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?," International Journal of Molecular Sciences, vol. 19, no. 1, p. 181, 2018.
  • [14] Z. B. Yaralı Çevik, O. Karaman, N. Topaloğlu, "Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation," Biomaterials Advances, vol. 149, p. 213392, 2023/06/01/ 2023.
  • [15] Z. B. Yaralı Çevik, O. Karaman, N. Topaloğlu, "Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues," Journal of Photochemistry and Photobiology B: Biology, vol. 238, p. 112615, 2023/01/01/ 2023.
  • [16] Z. B. Yaralı, G. Onak, O. Karaman, "Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids," Tissue Engineering and Regenerative Medicine, vol. 17, no. 5, pp. 595-605, Oct 2020.
  • [17] H. Huang, Y. Ding, X. S. Sun, T. A. Nguyen, "Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells," PLoS One, vol. 8, no. 3, p. e59482, 2013.
  • [18] F. Gelain, Z. Luo, S. Zhang, "Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel," Chemistry Reviews, vol. 120, no. 24, pp. 13434-13460, Dec 23 2020.
  • [19] E. Kaemmerer, F. P. W. Melchels, B. M. Holzapfel, T. Meckel, D. W. Hutmacher, D. Loessner, "Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system," Acta Biomaterialia, vol. 10, no. 6, pp. 2551-2562, 2014/06/01/ 2014.
  • [20] M. Vigata, C. Meinert, S. Pahoff, N. Bock, D. W. Hutmacher, "Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel," Polymers (Basel), vol. 12, no. 2, Feb 24 2020.
  • [21] K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels," Biomaterials, vol. 73, pp. 254-71, Dec 2015.
  • [22] N. Bock, F. Forouz, L. Hipwood, J. Clegg, P. Jeffery, M. Gough, T. V. Wyngaard, C. Pyke, M. N. Adams, L. J. Bray, L. Croft, E. W. Thompson, T. Kryza, C. Meinert, "GelMA, Click-Chemistry Gelatin and Bioprinted Polyethylene Glycol-Based Hydrogels as 3D Ex Vivo Drug Testing Platforms for Patient-Derived Breast Cancer Organoids," Pharmaceutics, vol. 15, no. 1, Jan 12 2023.
  • [23] H. Wang, Y. Feng, B. An, W. Zhang, M. Sun, Z. Fang, W. Yuan, M. Khan, "Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering," Journal of Materials Science: Materials in Medicine, vol. 23, no. 6, pp. 1499-1510, 2012/06/01 2012.
  • [24] Q. Pan, R. Fan, R. Chen, J. Yuan, S. Chen B. Cheng, "Weakly acidic microenvironment of the wound bed boosting the efficacy of acidic fibroblast growth factor to promote skin regeneration," Frontiers in Bioengineering and Biotechnology, vol. 11, p. 1150819, 2023.
  • [25] M. Moghtaderi, S. Bazzazan, S. Bazzazan, G. Sorourian, M. Sorourian, Y. Akhavanzanjani, H. Noorbazargan, Q. Ren, "Encapsulation of Thymol in Gelatin Methacryloyl (GelMa)-Based Nanoniosome Enables Enhanced Antibiofilm Activity and Wound Healing," Pharmaceutics, vol. 15, no. 6, Jun 9 2023.
  • [26] K. Wang, Q. Fu, X. Chen, Y. Gao, K. Dong, "Preparation and characterization of pH-sensitive hydrogel for drug delivery system," RSC Advances, 10.1039/C2RA20989F vol. 2, no. 20, pp. 7772-7780, 2012.
  • [27] S. Lee, A. Shanti, "Effect of Exogenous pH on Cell Growth of Breast Cancer Cells," International Journal of Molecular Science, vol. 22, no. 18, Sep 14 2021.
  • [28] N. Raghunand, R. Martínez-Zaguilán, S. H. Wright, R. J. Gillies, "pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs," Biochemical Pharmacology, vol. 57, no. 9, pp. 1047-58, May 1 1999.
  • [29] Z. Gu, M. Chang, Y. Fan, Y. Shi, G. Lin, "NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel," Colloids and Surfaces B Biointerfaces, vol. 160, pp. 395-405, Dec 1 2017.
  • [30] Y. Piao, H. You, T. Xu, H. P. Bei, I. Z. Piwko, Y. Y. Kwan, X. Zhao, "Biomedical applications of gelatin methacryloyl hydrogels," Engineered Regeneration, vol. 2, pp. 47-56, 2021/01/01/ 2021.
  • [31] H. C. Shih, T. A. Lee, H. M. Wu, P. L. Ko, W. H. Liao, Y. C. Tung, "Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration under Combinations of Oxygen Gradients, Tensions, and Drug Treatments," Scientific Reports, vol. 9, no. 1, p. 8234, 2019/06/03 2019.
  • [32] K. Miri, H. G. Hosseinabadi, B. Cecen, S. Hassan, Y. S. Zhang, "Permeability mapping of gelatin methacryloyl hydrogels," Acta Biomaterials, vol. 77, pp. 38-47, Sep 1 2018.
  • [33] Valentinis, S. Porcellini, C. Asperti, M. Cota, D. Zhou, P. D. Matteo, G. Garau, C. Zucchelli, N. R. Avanzi, G. P. Rizzardi, M. Degano, G. Musco, C. Traversari, "Mechanism of Action of the Tumor Vessel Targeting Agent NGR-hTNF: Role of Both NGR Peptide and hTNF in Cell Binding and Signaling," International Journal of Molecular Science, vol. 20, no. 18, Sep 12 2019.
  • [34] Mohammadi-Farsani, M. Habibi-Roudkenar, M. Golkar, M. A. Shokrgozar, A. J. Najafabadi, H. KhanAhmad, S. Valiyari, S. Bouzari, "A-NGR fusion protein induces apoptosis in human cancer cells," Excli Journal, vol. 17, pp. 590-597, 2018.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ziyşan Buse Yaralı Çevik 0000-0002-9371-6424

Meryem Zeybekoğlu 0009-0004-8232-9551

Ozan Karaman 0000-0002-4175-4402

Proje Numarası 2209-B/1139B412200033
Erken Görünüm Tarihi 27 Şubat 2024
Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 8 Ağustos 2023
Kabul Tarihi 4 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 1

Kaynak Göster

APA Yaralı Çevik, Z. B., Zeybekoğlu, M., & Karaman, O. (2024). Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 195-203. https://doi.org/10.16984/saufenbilder.1339660
AMA Yaralı Çevik ZB, Zeybekoğlu M, Karaman O. Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells. SAUJS. Şubat 2024;28(1):195-203. doi:10.16984/saufenbilder.1339660
Chicago Yaralı Çevik, Ziyşan Buse, Meryem Zeybekoğlu, ve Ozan Karaman. “Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 1 (Şubat 2024): 195-203. https://doi.org/10.16984/saufenbilder.1339660.
EndNote Yaralı Çevik ZB, Zeybekoğlu M, Karaman O (01 Şubat 2024) Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 195–203.
IEEE Z. B. Yaralı Çevik, M. Zeybekoğlu, ve O. Karaman, “Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells”, SAUJS, c. 28, sy. 1, ss. 195–203, 2024, doi: 10.16984/saufenbilder.1339660.
ISNAD Yaralı Çevik, Ziyşan Buse vd. “Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (Şubat 2024), 195-203. https://doi.org/10.16984/saufenbilder.1339660.
JAMA Yaralı Çevik ZB, Zeybekoğlu M, Karaman O. Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells. SAUJS. 2024;28:195–203.
MLA Yaralı Çevik, Ziyşan Buse vd. “Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 1, 2024, ss. 195-03, doi:10.16984/saufenbilder.1339660.
Vancouver Yaralı Çevik ZB, Zeybekoğlu M, Karaman O. Development of NGR-GelMA Hydrogels for PC3 Prostate Cancer Cells. SAUJS. 2024;28(1):195-203.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.