Research Article
BibTex RIS Cite

Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios

Year 2024, Volume: 28 Issue: 4, 782 - 793, 31.08.2024
https://doi.org/10.16984/saufenbilder.1446881

Abstract

The aim of this study is to determine the potential suitable distribution areas for Quercus cerris in the future depending on climate change scenarios. For this purpose, current spatial distribution data and 19 bioclimatic variable data downloaded from the WorldClim 2.1 database were used. The bioclimatic variable data consist of the climate data for the 2081-2100 period belonging to the SSP2-4.5 and SSP5-8.5 scenarios of the MIROC6 climate model with resolution of 2.5 arc-minutes. PCA was applied to bioclimatic variable data. MaxEnt 3.4.1 and ArcGIS 10.5 software were used to generate the models. The accuracy of the models was measured as 0.79 accuracy with the AUC test value. The variables that contributed the most to the model were BIO4 (temperature seasonality) with 39.8%, BIO9 (mean temperature of driest quarter) with 26.7%.
According to the results, it is predicted that the spatial distribution of this species unsuitable habitat areas, which is 25.9% today, will increase by 54.1% according to the SSP 245 scenario and by 80.2% according to the SSP 585 scenario. While the suitable habitat areas for Q. cerris in Anatolia are 33.2% today, they will change in a decreasing direction in the future by 11.6% according to the SSP 245 scenario and 14.0% according to the SSP 585 scenario. In addition to the direct impact of climate change scenarios on Q. cerris, when changes in land use are taken into account, the current distribution areas and suitable distribution areas of the species should be preserved with sustainable development goals

References

  • P. Kumar, “Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas Using Maxent Modelling: Limitations and Challenges,” Biodiversity and Conservation, vol. 21, pp. 1251-1266, 2012.
  • D. W. McKenney, D. W., J. H. Pedlar, K. Lawrence, K. Campbell, M. F. Hutchinson, “Potential Impacts of Climate Change on the Distribution of North American Trees,” BioScience, vol. 57, no. 11, pp. 939-948, 2007.
  • T. P. Dawson, S. T. Jackson, J., I. House, I. C. Prentice, G. M. Mace, “Beyond Predictions: Biodiversity Conservation in a Changing Climate,” Science, vol. 332, no. 6025, pp. 53-58, 2011.
  • C. Bellard, C. Bertelsmeier, P. Leadley, W. Thuiller, F. Courchamp, “Impacts of Climate Change on the Future of Biodiversity”. Ecology Letters, vol. 15, no. 4, pp. 365–377. 2012.
  • D. Stockwell, “The GARP Modelling System: Problems and Solutions to Automated Spatial Predictio,”. International Journal of Geographical Information Science, vol. 13, pp. 143–158, 2010.
  • A. Hirzel, A. Guisan, “Which is the Optimal Sampling Strategy for Habitat Suitability Modeling.” Ecological Modelling, Vol. 157, pp. 331–341, 2002.
  • J. R. Busby, “Bioclim, a Bioclimatic Analysis and Prediction System,” in Nature Conservation: Cost Effective Biological Surveys and Data Analysis, CSIRO, C. R. Margules M. P. Austin, pp. 64–68, 1991.
  • S. J. Phillips, R. P. Anderson, R. E. Schapire, “Maximum Entropy Modeling of Species Geographic Distributions, Ecological Modelling,” vol. 190, no. 3-4, pp. 231-259, 2006.
  • N. Anjum, Q. Ridwan, F. Akhter, M. Hanief, Predicting Current and Future Distribution Pattern of Berberis lycium Royle Concerning Climate Change Using an Ensemble Modelling Approach. Geology, Ecology, and Landscapes, pp. 1-10, 2023.
  • Y. P. Li, X. Gao, Q. An., Z. Sun, H. B. Wang, “Ecological Niche Modeling Based on Ensemble Algorithms to Predicting Current and Future Potential Distribution of African Swine Fever Virus in China”, Scientific Reports, vol. 12, no. 1, 15614. 2022.
  • Y. Gebrewahid, S. Abrehe, E. Meresa, G. Eyasu, K. Abay, G. Gebreab, K. Kidanemariam, G. Adissu, G. Abreha, G. Darcha, “Current and Future Predicting Potential Areas of Oxytenanthera abyssinica (A. Richard) Using MaxEnt Model Under Climate Change in Northern Ethiopia,”. Ecological Processes, vol. 9, no. 1, pp. 1-15, 2020.
  • Z. Cao, L. Zhang, X. Zhang, Z. Guo, “Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model,” Sustainability, vol 13, no. 20, 11253., pp.1-14, 2021.
  • G. Zhao, X. Cui, J. Sun, T. Li, Q. I. Wang, X. Ye, B. Fan, “Analysis of the Distribution Pattern of Chinese Ziziphus jujuba Under Climate Change Based on Optimized Biomod2 and MaxEnt Models.” Ecological Indicators, vol. 132, 108256, pp. 1-11, 2021.
  • D. E. Koç, D. Biltekin, B. Ustaoğlu, “Modelling Potential Distribution of Carpinus betulus in Anatolia and Its Surroundings from the Last Glacial Maximum to the Future,” Arabian Journal of Geosciences, vol. 14, no. 12, 1186, pp. 1-13, 2021.
  • D. E. Koç, H. N. Dalfes, A. Meral, “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler,”. Coğrafya Dergisi, vol. 44, pp. 81-95, 2022.
  • K. A. Baylan, B. Ustaoğlu, “Emberger Biyoiklim Sınıflandırmasına Göre Türkiye’de Akdeniz Biyoiklim Katlarının ve Alt Tiplerinin Dağılışı,” Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 3, no. 3, pp. 158-174, 2020.
  • M Türkeş, E. Erlat, “Precipitation Changes and Variability in Türkiye Linked to the North Atlantic Oscillation During the Period 1930–2000,” International Journal of Climatology: A Journal of the Royal Meteorological Society, vol. 23, no. 14, pp. 1771-1796, 2003.
  • B. Ustaoğlu, K. A. Tunçat, D. E. Koç, “Impacts of Climate Change on Precipitation and Temperature Climatology in Türkiye from Present to Future Perspective,” in Urban Commons, Future Smart Cities and Sustainability, Springer, pp. 403-426, 2023.
  • D. Aydinözü, A. Çoban, H. Tunç, “Tüylü Meşe’nin (Quercus pubescens) Türkiye’de Yeni bir Yayiliş Alani: Elmali Daği (Kayseri),” Doğu Coğrafya Dergisi, vol. 22, no. 37, pp.83-98, 2017.
  • T. Dündar, “Demirköy Yöresi Istranca Meşelerinin (Quercus hartwissiana Stev.) mekanik Özellikleri,” Journal of the Faculty of Forestry Istanbul University, vol. 52, no. 2, pp. 159-176. 2002.
  • N. Günal, “Türkiye’de Sinirli Yayilişa Sahip Bir Meşe Türü: Quercus ilex (Pirnal meşesi),” Öneri Dergisi, vol. 5, no. 19, pp. 191-197, 2003.
  • B. Gencal, “Bursa Orman Bölge Müdürlüğü Saçlı meşe (Quercus cerris) Meşcerelerindeki Büyüme İlişkileri,” Master's thesis, Bursa Teknik Üniversitesi, 2019.
  • D. De Rigo, C. M. Enescu, T. Houston Durrant, G. Caudullo, “Quercus cerris in Europe: distribution, habitat, usage and threats,” European Atlas of Forest Tree Species; Eds: J. San-Miguel-Ayanz, D de Rigo, G. Caudullo, T. Houston Durrant A. Mauri, pp. 148-149, 2016.
  • N. Móricz, G. Illés, I. Mészáros, B. Garamszegi, I. Berki, Z. Bakacsi, J. Kámpel, O. Szabó, E. Rasztovits, K. Cseke, K. Bereczki, T. M Németh, “Different drought sensitivity traits of young sessile oak (Quercus petraea (Matt.) Liebl.) and Türkiye oak (Quercus cerris L.) stands along a precipitation gradient in Hungary,” Forest Ecology and Management, 492, 119165, pp. 1-12, 2021.
  • A. Mert, K. Özkan, Ö. Şentürk, M. G. Negiz, “Changing the Potential Distribution of Türkiye Oak (Quercus cerris L.) Under Climate Change in Türkiye,” Polish Journal of Environmental Studies, vol. 25, no. 4, pp.1633-1638, 2016.
  • A. Di Filippo, A. Alessandrini, F. Biondi, S. Blasi, L. Portoghesi, G. Piovesan, “Climate Change and Oak Growth Decline: Dendroecology and stand productivity of a Türkiye oak (Quercus cerris L.) old stored coppice in Central Italy,” Annals of Forest Science, vol.67, pp. 706-706, 2010.
  • M. Stafasani, E. Toromani, “Growth-climate Response of Young Türkiye oak (Quercus cerris L.) Coppice Forest Stands Along Longitudinal Gradient in Albania,” South-East European Forestry: Seefor, vol. 6, no. 1, pp. 25-38, 2015.
  • İ. Ketin, “Anadolu'nun Tektonik Birlikleri.” Bulletin of the Mineral Research and Exploration, vol. 66, no. 66, pp. 20-37, 1966.
  • A. Tanoğlu, “Türkiye'nin İrtifa Kuşakları,” Türk Coğrafya Dergisi, vol. 9, no. 10, pp. 37-63, 1947.
  • M. Türkeş, “Türkiye’nin İklimsel Değişkenlik ve Sosyo-Ekolojik Göstergeler Açisindan Kurakliktan Etkilenebilirlik ve Risk Çözümlemesi,” Ege Coğrafya Dergisi, vol. 26, no. 2, pp. 47-70, 2017.
  • B. Ustaoğlu, “Sakarya'nın İklim Özellikleri,” in. Sakarya'nın Fiziki, Beşeri ve İktisadi Coğrafya Özellikleri, Sakarya Universtiy Press, Sakarya, C. İkiel, pp. 163-218, 2018.
  • N. Günal, “Türkiye'de Başlıca Ağaç Türlerinin Coğrafi Yayılışları, Ekolojik ve Floristik Özellikleri,” Çantay Kitabevi. 1997.
  • I.C. Hedge, F. Yaltırık, “Quercus L.”, in Flora of Türkiye and the East Aegean Islands, Vol.7 Edinburgh: Edinburgh University Press P. Davis, M. Coode, & J. Cullen, pp. 675-676, 1982.
  • F. Yaltırık, “Türkiye Meşeleri, Tarım Orman ve Köy İşleri Bakanlığı,” Orman Genel Müdürlüğü Yayınları Yenilik Basımevi, İstanbul, 1984.
  • T. Sönmez, B. Gencal, “Bursa Orman Bölge Müdürlüğü Saçlı Meşe (Quercus cerris) Meşcerelerindeki Büyüme İlişkileri,” Ormancılık Araştırma Dergisi, vol. 10 (Özel Sayı), pp. 92-104, 2023.
  • M. C. Simeone, P. Zhelev, Kandemir, G. (2019). Technical Guidelines for genetic conservation and use of Türkiye oak (Quercus cerris).
  • Global Biodiversity Information Facilit (GBIF), https://doi.org/10.15468/dl.kb9wwr, 02 August 2023.
  • European Forest Genetic Resources Programme (EUFORGEN), https://www.euforgen.org/species/, 02 August 2023.
  • S.E. Fick, R.J. Hijmans, “WorldClim 2: new 1km spatial resolution climate surfaces for global land areas,” International Journal of Climatology 37 (12): 4302-pp. 4315, 2017.
  • WorldClim,https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html, 02 August 2023.
  • S. Özdemir, K. Özkan, A. Mert, “An Ecological Perspective on Climate Change Scenarios, Biodiversity and Conservation,” vol. 13, no. 3, pp. 361-371, 2020.
  • D. E. Koc, J. C. Svenning, A. Meral, “Climate Change Impacts on the Potential Distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Türkiye) from Last Glacial Maximum to the Future,” Eurasian Journal of Forest Science, vol. 6, no. 3, pp. 69-82. 2018.
  • C. P. Osborne, P. L. Mitchell, J. E. Sheehy, F. I. Woodward, “Modelling the Recent Historical Impacts of Atmospheric CO2 and Climate Change on Mediterranean Vegetation”. Global Change Biology, vol. 6, no. 4, pp. 445-458, 2000.
  • M. Toledo, L. Poorter, M. Peña‐Claros, A. Alarcón, J. Balcázar, C. Leaño, J. C. Licona, O. Llanque, V. Vroomans, P. Zuidema, F. Bongers, “Climate is a Stronger Driver of Tree and Forest Growth Rates Than Soil and Disturbance,”. Journal of Ecology, vol. 99, no. 1, pp. 254-264, 2011.
  • N. Bystriakova, M. Peregrym, R. H. Erkens, O. Bezsmertna, H. Schneider, “Sampling Bias in Geographic and Environmental Space and Its Effect on the Predictive Power of Species Distribution Models,”. Systematics and Biodiversity, vol. 10, no. 3, pp. 305-315, 2012.
  • S. Özdemir, S. Gülsoy, M. Ahmet, “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper,” Kastamonu University Journal of Forestry Faculty, vol. 20, no. 2, pp. 133–142, 2020.
  • H. Su, M. Bista, M. Li, “Mapping Habitat Suitability for Asiatic Black Bear and Red Panda in Makalu Barun National Park of Nepal from Maxent and GARP Models,” Scientific Reports, vol. 11, no. 1, 14135, 2021.
  • A. M. Khan, Q. Li, Z. Saqib, N. Khan, T. Habib, N. Khalid, M Majeed, A. Tariq, “MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia,”. Forests, vol. 13, no. 5, 715, pp. 1-23, 2022.
  • K., İpekdal, D. Beton, “Model Predicts a Future Pine Processionary Moth Risk in Artvin and Adjacent Regions,”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 15, no. 2, pp. 85-95, 2014.
  • G. Zhao, X. Cui, J. Sun, T. Li, Q. I. Wang, X. Ye, B. Fan, “Analysis of the Distribution Pattern of Chinese Ziziphus Jujuba Under Climate Change Based on Optimized Biomod2 and MaxEnt Models,” Ecological Indicators, vol. 132, 108256, pp. 1-11, 2021.
  • A. Qin, B. Liu, Q. Guo, R. W. Bussmann, F. Ma, Z. Jian, G. Xu, S. Pei, “Maxent Modeling for Predicting Impacts of Climate Change on the Potential Distribution of Thuja sutchuenensis Franch., an Extremely Endangered Conifer from Southwestern China,” Global Ecology and Conservation, vol., 10, pp. 139-146, 2017.
  • M. Bobrowski, L. Gerlitz, U. Schickhoff, “Modelling the Potential Distribution of Betula utilis in the Himalaya”, Global Ecology and Conservation, vol. 11, pp. 69–83.
  • M. Bobrowski, U. Schickhoff “Why Input Matters: Selection of Climate Data Sets for Modelling the Potential Distribution of a Treeline Species in the Himalayan Region”, Ecological Modelling, 359, pp. 92–102, 2017.
  • C. A. Drew, A. H. Perera, “Expert Knowledge as a Basis for Landscape Ecological Predictive Models”, Predictive species and habitat modeling in landscape ecology: Concepts and applications, Drew C. A., Wiersma Y. F., & Huettmann F., New York, NY: Springer.
  • A. Akyol, Ö. K. Örücü, E. S. Arslan, A. G. Sarıkaya, “Predicting of the Current and Future Geographical Distribution of Laurus nobilis L. Under the Effects of Climate Change,” Environmental Monitoring and Assessment, vol. 195, no. 4, 459, pp. 1-18, 2023.
  • H. Mirhashemi, M. Heydari, K. Ahmadi, O. Karami, A. Kavgaci, T. Matsui, B. Heung, “Species distribution models of Brant's oak (Quercus brantii Lindl.): The impact of spatial database on predicting the impacts of climate change”, Ecological Engineering, 194, pp. 107038,2023.
  • R. Piwowarczyk, M. Kolanowska, “Predicting the Effect of Global Warming on the Distribution of a Polyphagous Tree Parasite, Orobanche laxissima, Based on Climatic and Ecological Data”, Global Ecology and Conservation, vol. 44, pp. e02486, 2023.
  • M. Lindner, J. B. Fitzgerald, N. E. Zimmermann, C. Reyer, S. Delzon, E. van der Maaten, M. Schelhaas, P. Lasch, J. Eggers, M. Maaten-Theunissen, F. Suckow, A. Psomas, B. Poulter, M. Hanewinkel, “Climate Change and European Forests: What Do We Know, What Are the Uncertainties, and What Are the Implications for Forest Management?”. Journal of Environmental Management, vol. 146, pp. 69–83, 2014.
  • S. Ayan, E. Bugday, T. Varol, H. B. Özel, E. A. Thurm, “Effect of Climate Change on Potential Distribution of Oriental Beech (Fagus orientalis Lipsky.) in the Twenty-First Century in Türkiye,”. Theoretical and Applied Climatology, vol. 148, no.1-2, pp.165-177, 2022.
  • U. Canturk, Ş. Kulaç, “The Effects of Climate Change Scenarios on Tilia ssp. in Türkiye,” Environmental Monitoring and Assessment, vol. 193, no. 12, 771, pp. 1-11, 2021.
  • A. A. Babalik, O. Sarikaya, O. K. Orucu, “The Current and Future Compliance Areas of Kermes Oak (Quercus coccifera L.) Under Climate Change in Türkiye,” Fresenius Environmental Bulletin, vol. 30, no. 01, pp. 406-413, 2021.
  • D. E. Koç, “Modeling of The Potential Distribution of Laurus nobilis in Anatolia from the Last Glacial Maximum to the Future,” International Conference on Agricultural, Biological and Life Science (AGBIOL 2022), pp. 248, Türkiye, 2022.
  • S. Ayan, E. Bugday, T. Varol, T., H.H. Özel, E.A. Thurm, Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty‑frst century in Türkiye,” Theoretical and Applied Climatology, pp. 1-13, 2022.
  • A. U. Özcan, K. Çiçek, “How long do We Think Humans Have Been Planting Forests? A Case Study with Cedrus libani A. Rich,”. New Forests, vol. 54, no.1, pp. 49-65. 2023.
Year 2024, Volume: 28 Issue: 4, 782 - 793, 31.08.2024
https://doi.org/10.16984/saufenbilder.1446881

Abstract

References

  • P. Kumar, “Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas Using Maxent Modelling: Limitations and Challenges,” Biodiversity and Conservation, vol. 21, pp. 1251-1266, 2012.
  • D. W. McKenney, D. W., J. H. Pedlar, K. Lawrence, K. Campbell, M. F. Hutchinson, “Potential Impacts of Climate Change on the Distribution of North American Trees,” BioScience, vol. 57, no. 11, pp. 939-948, 2007.
  • T. P. Dawson, S. T. Jackson, J., I. House, I. C. Prentice, G. M. Mace, “Beyond Predictions: Biodiversity Conservation in a Changing Climate,” Science, vol. 332, no. 6025, pp. 53-58, 2011.
  • C. Bellard, C. Bertelsmeier, P. Leadley, W. Thuiller, F. Courchamp, “Impacts of Climate Change on the Future of Biodiversity”. Ecology Letters, vol. 15, no. 4, pp. 365–377. 2012.
  • D. Stockwell, “The GARP Modelling System: Problems and Solutions to Automated Spatial Predictio,”. International Journal of Geographical Information Science, vol. 13, pp. 143–158, 2010.
  • A. Hirzel, A. Guisan, “Which is the Optimal Sampling Strategy for Habitat Suitability Modeling.” Ecological Modelling, Vol. 157, pp. 331–341, 2002.
  • J. R. Busby, “Bioclim, a Bioclimatic Analysis and Prediction System,” in Nature Conservation: Cost Effective Biological Surveys and Data Analysis, CSIRO, C. R. Margules M. P. Austin, pp. 64–68, 1991.
  • S. J. Phillips, R. P. Anderson, R. E. Schapire, “Maximum Entropy Modeling of Species Geographic Distributions, Ecological Modelling,” vol. 190, no. 3-4, pp. 231-259, 2006.
  • N. Anjum, Q. Ridwan, F. Akhter, M. Hanief, Predicting Current and Future Distribution Pattern of Berberis lycium Royle Concerning Climate Change Using an Ensemble Modelling Approach. Geology, Ecology, and Landscapes, pp. 1-10, 2023.
  • Y. P. Li, X. Gao, Q. An., Z. Sun, H. B. Wang, “Ecological Niche Modeling Based on Ensemble Algorithms to Predicting Current and Future Potential Distribution of African Swine Fever Virus in China”, Scientific Reports, vol. 12, no. 1, 15614. 2022.
  • Y. Gebrewahid, S. Abrehe, E. Meresa, G. Eyasu, K. Abay, G. Gebreab, K. Kidanemariam, G. Adissu, G. Abreha, G. Darcha, “Current and Future Predicting Potential Areas of Oxytenanthera abyssinica (A. Richard) Using MaxEnt Model Under Climate Change in Northern Ethiopia,”. Ecological Processes, vol. 9, no. 1, pp. 1-15, 2020.
  • Z. Cao, L. Zhang, X. Zhang, Z. Guo, “Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model,” Sustainability, vol 13, no. 20, 11253., pp.1-14, 2021.
  • G. Zhao, X. Cui, J. Sun, T. Li, Q. I. Wang, X. Ye, B. Fan, “Analysis of the Distribution Pattern of Chinese Ziziphus jujuba Under Climate Change Based on Optimized Biomod2 and MaxEnt Models.” Ecological Indicators, vol. 132, 108256, pp. 1-11, 2021.
  • D. E. Koç, D. Biltekin, B. Ustaoğlu, “Modelling Potential Distribution of Carpinus betulus in Anatolia and Its Surroundings from the Last Glacial Maximum to the Future,” Arabian Journal of Geosciences, vol. 14, no. 12, 1186, pp. 1-13, 2021.
  • D. E. Koç, H. N. Dalfes, A. Meral, “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler,”. Coğrafya Dergisi, vol. 44, pp. 81-95, 2022.
  • K. A. Baylan, B. Ustaoğlu, “Emberger Biyoiklim Sınıflandırmasına Göre Türkiye’de Akdeniz Biyoiklim Katlarının ve Alt Tiplerinin Dağılışı,” Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 3, no. 3, pp. 158-174, 2020.
  • M Türkeş, E. Erlat, “Precipitation Changes and Variability in Türkiye Linked to the North Atlantic Oscillation During the Period 1930–2000,” International Journal of Climatology: A Journal of the Royal Meteorological Society, vol. 23, no. 14, pp. 1771-1796, 2003.
  • B. Ustaoğlu, K. A. Tunçat, D. E. Koç, “Impacts of Climate Change on Precipitation and Temperature Climatology in Türkiye from Present to Future Perspective,” in Urban Commons, Future Smart Cities and Sustainability, Springer, pp. 403-426, 2023.
  • D. Aydinözü, A. Çoban, H. Tunç, “Tüylü Meşe’nin (Quercus pubescens) Türkiye’de Yeni bir Yayiliş Alani: Elmali Daği (Kayseri),” Doğu Coğrafya Dergisi, vol. 22, no. 37, pp.83-98, 2017.
  • T. Dündar, “Demirköy Yöresi Istranca Meşelerinin (Quercus hartwissiana Stev.) mekanik Özellikleri,” Journal of the Faculty of Forestry Istanbul University, vol. 52, no. 2, pp. 159-176. 2002.
  • N. Günal, “Türkiye’de Sinirli Yayilişa Sahip Bir Meşe Türü: Quercus ilex (Pirnal meşesi),” Öneri Dergisi, vol. 5, no. 19, pp. 191-197, 2003.
  • B. Gencal, “Bursa Orman Bölge Müdürlüğü Saçlı meşe (Quercus cerris) Meşcerelerindeki Büyüme İlişkileri,” Master's thesis, Bursa Teknik Üniversitesi, 2019.
  • D. De Rigo, C. M. Enescu, T. Houston Durrant, G. Caudullo, “Quercus cerris in Europe: distribution, habitat, usage and threats,” European Atlas of Forest Tree Species; Eds: J. San-Miguel-Ayanz, D de Rigo, G. Caudullo, T. Houston Durrant A. Mauri, pp. 148-149, 2016.
  • N. Móricz, G. Illés, I. Mészáros, B. Garamszegi, I. Berki, Z. Bakacsi, J. Kámpel, O. Szabó, E. Rasztovits, K. Cseke, K. Bereczki, T. M Németh, “Different drought sensitivity traits of young sessile oak (Quercus petraea (Matt.) Liebl.) and Türkiye oak (Quercus cerris L.) stands along a precipitation gradient in Hungary,” Forest Ecology and Management, 492, 119165, pp. 1-12, 2021.
  • A. Mert, K. Özkan, Ö. Şentürk, M. G. Negiz, “Changing the Potential Distribution of Türkiye Oak (Quercus cerris L.) Under Climate Change in Türkiye,” Polish Journal of Environmental Studies, vol. 25, no. 4, pp.1633-1638, 2016.
  • A. Di Filippo, A. Alessandrini, F. Biondi, S. Blasi, L. Portoghesi, G. Piovesan, “Climate Change and Oak Growth Decline: Dendroecology and stand productivity of a Türkiye oak (Quercus cerris L.) old stored coppice in Central Italy,” Annals of Forest Science, vol.67, pp. 706-706, 2010.
  • M. Stafasani, E. Toromani, “Growth-climate Response of Young Türkiye oak (Quercus cerris L.) Coppice Forest Stands Along Longitudinal Gradient in Albania,” South-East European Forestry: Seefor, vol. 6, no. 1, pp. 25-38, 2015.
  • İ. Ketin, “Anadolu'nun Tektonik Birlikleri.” Bulletin of the Mineral Research and Exploration, vol. 66, no. 66, pp. 20-37, 1966.
  • A. Tanoğlu, “Türkiye'nin İrtifa Kuşakları,” Türk Coğrafya Dergisi, vol. 9, no. 10, pp. 37-63, 1947.
  • M. Türkeş, “Türkiye’nin İklimsel Değişkenlik ve Sosyo-Ekolojik Göstergeler Açisindan Kurakliktan Etkilenebilirlik ve Risk Çözümlemesi,” Ege Coğrafya Dergisi, vol. 26, no. 2, pp. 47-70, 2017.
  • B. Ustaoğlu, “Sakarya'nın İklim Özellikleri,” in. Sakarya'nın Fiziki, Beşeri ve İktisadi Coğrafya Özellikleri, Sakarya Universtiy Press, Sakarya, C. İkiel, pp. 163-218, 2018.
  • N. Günal, “Türkiye'de Başlıca Ağaç Türlerinin Coğrafi Yayılışları, Ekolojik ve Floristik Özellikleri,” Çantay Kitabevi. 1997.
  • I.C. Hedge, F. Yaltırık, “Quercus L.”, in Flora of Türkiye and the East Aegean Islands, Vol.7 Edinburgh: Edinburgh University Press P. Davis, M. Coode, & J. Cullen, pp. 675-676, 1982.
  • F. Yaltırık, “Türkiye Meşeleri, Tarım Orman ve Köy İşleri Bakanlığı,” Orman Genel Müdürlüğü Yayınları Yenilik Basımevi, İstanbul, 1984.
  • T. Sönmez, B. Gencal, “Bursa Orman Bölge Müdürlüğü Saçlı Meşe (Quercus cerris) Meşcerelerindeki Büyüme İlişkileri,” Ormancılık Araştırma Dergisi, vol. 10 (Özel Sayı), pp. 92-104, 2023.
  • M. C. Simeone, P. Zhelev, Kandemir, G. (2019). Technical Guidelines for genetic conservation and use of Türkiye oak (Quercus cerris).
  • Global Biodiversity Information Facilit (GBIF), https://doi.org/10.15468/dl.kb9wwr, 02 August 2023.
  • European Forest Genetic Resources Programme (EUFORGEN), https://www.euforgen.org/species/, 02 August 2023.
  • S.E. Fick, R.J. Hijmans, “WorldClim 2: new 1km spatial resolution climate surfaces for global land areas,” International Journal of Climatology 37 (12): 4302-pp. 4315, 2017.
  • WorldClim,https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html, 02 August 2023.
  • S. Özdemir, K. Özkan, A. Mert, “An Ecological Perspective on Climate Change Scenarios, Biodiversity and Conservation,” vol. 13, no. 3, pp. 361-371, 2020.
  • D. E. Koc, J. C. Svenning, A. Meral, “Climate Change Impacts on the Potential Distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Türkiye) from Last Glacial Maximum to the Future,” Eurasian Journal of Forest Science, vol. 6, no. 3, pp. 69-82. 2018.
  • C. P. Osborne, P. L. Mitchell, J. E. Sheehy, F. I. Woodward, “Modelling the Recent Historical Impacts of Atmospheric CO2 and Climate Change on Mediterranean Vegetation”. Global Change Biology, vol. 6, no. 4, pp. 445-458, 2000.
  • M. Toledo, L. Poorter, M. Peña‐Claros, A. Alarcón, J. Balcázar, C. Leaño, J. C. Licona, O. Llanque, V. Vroomans, P. Zuidema, F. Bongers, “Climate is a Stronger Driver of Tree and Forest Growth Rates Than Soil and Disturbance,”. Journal of Ecology, vol. 99, no. 1, pp. 254-264, 2011.
  • N. Bystriakova, M. Peregrym, R. H. Erkens, O. Bezsmertna, H. Schneider, “Sampling Bias in Geographic and Environmental Space and Its Effect on the Predictive Power of Species Distribution Models,”. Systematics and Biodiversity, vol. 10, no. 3, pp. 305-315, 2012.
  • S. Özdemir, S. Gülsoy, M. Ahmet, “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper,” Kastamonu University Journal of Forestry Faculty, vol. 20, no. 2, pp. 133–142, 2020.
  • H. Su, M. Bista, M. Li, “Mapping Habitat Suitability for Asiatic Black Bear and Red Panda in Makalu Barun National Park of Nepal from Maxent and GARP Models,” Scientific Reports, vol. 11, no. 1, 14135, 2021.
  • A. M. Khan, Q. Li, Z. Saqib, N. Khan, T. Habib, N. Khalid, M Majeed, A. Tariq, “MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia,”. Forests, vol. 13, no. 5, 715, pp. 1-23, 2022.
  • K., İpekdal, D. Beton, “Model Predicts a Future Pine Processionary Moth Risk in Artvin and Adjacent Regions,”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 15, no. 2, pp. 85-95, 2014.
  • G. Zhao, X. Cui, J. Sun, T. Li, Q. I. Wang, X. Ye, B. Fan, “Analysis of the Distribution Pattern of Chinese Ziziphus Jujuba Under Climate Change Based on Optimized Biomod2 and MaxEnt Models,” Ecological Indicators, vol. 132, 108256, pp. 1-11, 2021.
  • A. Qin, B. Liu, Q. Guo, R. W. Bussmann, F. Ma, Z. Jian, G. Xu, S. Pei, “Maxent Modeling for Predicting Impacts of Climate Change on the Potential Distribution of Thuja sutchuenensis Franch., an Extremely Endangered Conifer from Southwestern China,” Global Ecology and Conservation, vol., 10, pp. 139-146, 2017.
  • M. Bobrowski, L. Gerlitz, U. Schickhoff, “Modelling the Potential Distribution of Betula utilis in the Himalaya”, Global Ecology and Conservation, vol. 11, pp. 69–83.
  • M. Bobrowski, U. Schickhoff “Why Input Matters: Selection of Climate Data Sets for Modelling the Potential Distribution of a Treeline Species in the Himalayan Region”, Ecological Modelling, 359, pp. 92–102, 2017.
  • C. A. Drew, A. H. Perera, “Expert Knowledge as a Basis for Landscape Ecological Predictive Models”, Predictive species and habitat modeling in landscape ecology: Concepts and applications, Drew C. A., Wiersma Y. F., & Huettmann F., New York, NY: Springer.
  • A. Akyol, Ö. K. Örücü, E. S. Arslan, A. G. Sarıkaya, “Predicting of the Current and Future Geographical Distribution of Laurus nobilis L. Under the Effects of Climate Change,” Environmental Monitoring and Assessment, vol. 195, no. 4, 459, pp. 1-18, 2023.
  • H. Mirhashemi, M. Heydari, K. Ahmadi, O. Karami, A. Kavgaci, T. Matsui, B. Heung, “Species distribution models of Brant's oak (Quercus brantii Lindl.): The impact of spatial database on predicting the impacts of climate change”, Ecological Engineering, 194, pp. 107038,2023.
  • R. Piwowarczyk, M. Kolanowska, “Predicting the Effect of Global Warming on the Distribution of a Polyphagous Tree Parasite, Orobanche laxissima, Based on Climatic and Ecological Data”, Global Ecology and Conservation, vol. 44, pp. e02486, 2023.
  • M. Lindner, J. B. Fitzgerald, N. E. Zimmermann, C. Reyer, S. Delzon, E. van der Maaten, M. Schelhaas, P. Lasch, J. Eggers, M. Maaten-Theunissen, F. Suckow, A. Psomas, B. Poulter, M. Hanewinkel, “Climate Change and European Forests: What Do We Know, What Are the Uncertainties, and What Are the Implications for Forest Management?”. Journal of Environmental Management, vol. 146, pp. 69–83, 2014.
  • S. Ayan, E. Bugday, T. Varol, H. B. Özel, E. A. Thurm, “Effect of Climate Change on Potential Distribution of Oriental Beech (Fagus orientalis Lipsky.) in the Twenty-First Century in Türkiye,”. Theoretical and Applied Climatology, vol. 148, no.1-2, pp.165-177, 2022.
  • U. Canturk, Ş. Kulaç, “The Effects of Climate Change Scenarios on Tilia ssp. in Türkiye,” Environmental Monitoring and Assessment, vol. 193, no. 12, 771, pp. 1-11, 2021.
  • A. A. Babalik, O. Sarikaya, O. K. Orucu, “The Current and Future Compliance Areas of Kermes Oak (Quercus coccifera L.) Under Climate Change in Türkiye,” Fresenius Environmental Bulletin, vol. 30, no. 01, pp. 406-413, 2021.
  • D. E. Koç, “Modeling of The Potential Distribution of Laurus nobilis in Anatolia from the Last Glacial Maximum to the Future,” International Conference on Agricultural, Biological and Life Science (AGBIOL 2022), pp. 248, Türkiye, 2022.
  • S. Ayan, E. Bugday, T. Varol, T., H.H. Özel, E.A. Thurm, Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty‑frst century in Türkiye,” Theoretical and Applied Climatology, pp. 1-13, 2022.
  • A. U. Özcan, K. Çiçek, “How long do We Think Humans Have Been Planting Forests? A Case Study with Cedrus libani A. Rich,”. New Forests, vol. 54, no.1, pp. 49-65. 2023.
There are 64 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Research Articles
Authors

Cercis İkiel 0000-0001-5138-5308

Early Pub Date August 1, 2024
Publication Date August 31, 2024
Submission Date March 4, 2024
Acceptance Date May 30, 2024
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA İkiel, C. (2024). Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios. Sakarya University Journal of Science, 28(4), 782-793. https://doi.org/10.16984/saufenbilder.1446881
AMA İkiel C. Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios. SAUJS. August 2024;28(4):782-793. doi:10.16984/saufenbilder.1446881
Chicago İkiel, Cercis. “Determination of Potential Distribution Areas of Quercus Cerris (Turkish Oak) in Anatolia According to Climate Change Scenarios”. Sakarya University Journal of Science 28, no. 4 (August 2024): 782-93. https://doi.org/10.16984/saufenbilder.1446881.
EndNote İkiel C (August 1, 2024) Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios. Sakarya University Journal of Science 28 4 782–793.
IEEE C. İkiel, “Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios”, SAUJS, vol. 28, no. 4, pp. 782–793, 2024, doi: 10.16984/saufenbilder.1446881.
ISNAD İkiel, Cercis. “Determination of Potential Distribution Areas of Quercus Cerris (Turkish Oak) in Anatolia According to Climate Change Scenarios”. Sakarya University Journal of Science 28/4 (August 2024), 782-793. https://doi.org/10.16984/saufenbilder.1446881.
JAMA İkiel C. Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios. SAUJS. 2024;28:782–793.
MLA İkiel, Cercis. “Determination of Potential Distribution Areas of Quercus Cerris (Turkish Oak) in Anatolia According to Climate Change Scenarios”. Sakarya University Journal of Science, vol. 28, no. 4, 2024, pp. 782-93, doi:10.16984/saufenbilder.1446881.
Vancouver İkiel C. Determination of Potential Distribution Areas of Quercus cerris (Turkish oak) in Anatolia According to Climate Change Scenarios. SAUJS. 2024;28(4):782-93.