Araştırma Makalesi
BibTex RIS Kaynak Göster

Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry

Yıl 2024, Cilt: 28 Sayı: 5, 1022 - 1030
https://doi.org/10.16984/saufenbilder.1391232

Öz

The interest in research to enhance the ability of sensitizers to generate singlet oxygen using light and/or ultrasound in cancer treatment has increased significantly in recent years, and studies have attracted considerable interest. In addition, phthalocyanines (Pcs) have become increasingly important as sensitizers in photodynamic therapy (PDT) (stimulation source: light) and/or sonodynamic therapy (SDT) (stimulation source: light and ultrasound). Sonophotodynamic therapy (SPDT), a new technique that gives more effective results than PDT, is now gaining in importance. Although there are published articles on SPDT studies, studies in this field are limited. In this context, we synthesized a zinc(II) phthalocyanine molecule bearing 4-(pyridine-4-ylthio) substituents to determine its potential as a sensitizer in SPDT applications as well as PDT applications, and the structure of the synthesized complex was illuminated using FTIR,1H-NMR, UV-Vis, and MS spectroscopic techniques. When light and ultrasound were combined, the calculated ΦΔ value for zinc (II) phthalocyanine (3) increased to greater than 1, even though it was 0.76 after light excitation. When evaluating the two methods, it was observed that singlet oxygen production was greatly enhanced by the SPDT method. In this way, the research will add to the enhancement of knowledge on the subject of the SPDT method's enhancement of singlet oxygen generation.

Destekleyen Kurum

Yildiz Technical University, Scientific Research Projects Coordination Unit

Proje Numarası

FKD-2021-4759

Teşekkür

Thanks to Prof. Dr. Ali Erdoğmuş from Yildiz Technical University for his contributions.

Kaynakça

  • P. Yan, L. H. Liu, P. Wang,“Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor,” ACS Appl Bio Mater, vol. 3, no. 6, pp. 3456–3475, 2020.
  • I. P. F. Nunes, P. J. L. Crugeira, F. J. P. Sampaio, S. C. P. S. de Oliveira, J. M Azevedo, C. L. O. Santos, L. G. P. Soares, I. D. W. Samuel, S. Persheyev, P. F. de Ameida, A. L. B. Pinheiro, “Evaluation of dual application of photodynamic therapy-PDT in Candida albicans,” Photodiagnosis and Photodynamic Therapy, vol. 42, 2023.
  • Ö. D. Kutlu, A. Erdoğmuş, P. Şen, S. Z. Yıldız, “Peripherally tetra-Schiff base substituted metal-free and zinc (II) phthalocyanine, its water-soluble derivative: Synthesis, characterization, photo-physicochemical, aggregation properties and DNA/BSA binding activity,” Journal of Molecular Structure, vol. 1284, p. 135375, 2023.
  • N. Kocaaǧa, Ö. D. Kutlu, A. Erdoǧmuş, “New peripherally substituted lutetium mono and bis phthalocyanines: Synthesis and comparative photophysical and photochemical properties,” Journal of Porphyrins and Phthalocyanines ,vol. 23, no. 11n12, pp. 1099-1409, 2019.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Comparison of singlet oxygen production of ethyl vanillin substituted silicon phthalocyanine using sonophotodynamic and photodynamic methods,” Journal of Molecular Structure, vol. 1274, p. 134498, 2023.
  • C. McEwan, H. Nesbitt, D. Nicholas, O. N. Kavanagh, K.McKenna, P. Loan, I. G. Jack, A. P. McHale, J. F. Callan, “Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer,” Bioorganic & Medicinal Chemistry, vol. 24, no. 13, pp. 3023–3028, 2016.
  • N. Nomikou, K. Curtis, C. McEwan, B. M. G O'Hagan, B. Callan, J. F. Callan, A. P. McHale, “A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy,” Acta Biomaterialia, vol. 49, pp. 414–421, 2017.
  • M. Aksel, O. Bozkurt-Girit, M. D. Bilgin, “Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer,” Photodiagnosis and Photodynamic Therapy, vol. 31, p. 101909, 2020.
  • M. Aksel, Ö. Kesmez, A. Yavaş, M. D. Bilgin, “Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer,” Journal of Photochemistry and Photobiology B: Biology, vol. 225, p. 112333, 2021.
  • L. C. Nene, A. Magadla, T. Nyokong, “Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity,” Journal of Photochemistry and Photobiology B: Biology, vol. 235, p. 112553, 2022.
  • L. C. Nene, T. Nyokong, “Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro,” Photodiagnosis and Photodynamic Therapy, vol. 36, p. 102573, 2021.
  • K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, “Photophysics and photochemistry of photodynamic therapy: fundamental aspects,” Lasers in Medical Science, vol. 24, no. 2, pp. 259–268, Mar. 2009.
  • J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chemical Reviews, vol. 110, no. 5, pp. 2795–2838, May 2010.
  • J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chemical Reviews, vol. 110, no. 5, pp. 2839–2857, May 2010.
  • W. M. Sharman, C. M. Allen, J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today, vol. 4, no. 11, pp. 507–517, 1999.
  • H. Kolarova, K. Tomankova, R. Bajgar, P. Kolar, R. Kubinek, “Photodynamic and Sonodynamic Treatment by Phthalocyanine on Cancer Cell Lines,” Ultrasound in Medicine & Biology, vol. 35, no. 8, pp. 1397–1404, 2009.
  • F. Ayaz, D. Yetkin, A. Yüzer, K. Demircioğlu, M. Ince, “Non-canonical anti-cancer, anti-metastatic, anti-angiogenic and immunomodulatory PDT potentials of water soluble phthalocyanine derivatives with imidazole groups and their intracellular mechanism of action,” Photodiagnosis and Photodynamic Therapy, vol. 39, p. 103035, 2022.
  • J. Wang, M. Xu, M. Chen, Z. Jiang, G. Chen, “Study on sonodynamic activity of metallophthalocyanine sonosensitizers based on the sonochemiluminescence of MCLA,” Ultrasonics Sonochemistry, vol. 19, no. 2, pp. 237–242, 2012.
  • H.-N. Xu, H.-J. Chen, B.-Y. Zheng, Y.-Q. Zheng, M.-R. Ke, J.-D. Huang, “Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate,” Ultrasonics Sonochemistry, vol. 22, pp. 125–131, 2015.
  • J. D. Spikes, “Phthalocyanınes As Photosensıtızers In Bıologıcal Systems And For The Photodynamıc Therapy Of Tumors,” Photochemistry and Photobiology, vol. 43, no. 6, pp. 691–699, 1986.
  • D. Li, Q. Y. Hu, X. Z. Wang, X. Li, J. Q. Hu, B. Y. Zheng, M. R. Ke, J. D. Huang, “A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy,” Bioorganic & Medicinal Chemistry Letters, vol. 30, no. 12, p. 127164, 2020.
  • P. E. Alford, “Six-Membered Ring Systems: Pyridines and Benzo Derivatives,” 30, G.W. Gribble, J. A. Joule, Elsevier Inc 2011, pp. 349–391.
  • A. M. Rolim Bernardino, L. C. da Silva Pinheiro, C. R. Rodrigues, N. I.Loureiro, H. C. Castro, A. Lanfredi-Rangel, J. Sabatini-Lopes, J. C.Borges, J. M. Carvalho, G. A. Romeiro, V. F. Ferreira, C. P. P I. Frugulhetti, M. A. Vannier-Santos, “Design, synthesis, SAR, and biological evaluation of new 4-(phenylamino)thieno[2,3-b]pyridine derivatives,” Bioorganic & Medicinal Chemistry, vol. 14, no. 16, pp. 5765–5770, 2006.
  • M. Vrábel, M. Hocek, L. Havran, M. Fojta, I. Votruba, B. Klepetářová, R. Pohl, L. Rulíšek, L. Zendlová, P. Hobza, I. Shih, E. Mabery, R. Mackman, “Purines Bearing Phenanthroline or Bipyridine Ligands and Their RuII Complexes in Position 8 as Model Compounds for Electrochemical DNA Labeling – Synthesis, Crystal Structure, Electrochemistry, Quantum Chemical Calculations, Cytostatic and Antiviral Activ,” European Journal of Inorganic Chemistry, vol. 2007, no. 12, pp. 1752–1769, Apr. 2007.
  • E. G. Paronikyan, A. S. Noravyan, I. A. Dzhagatspanyan, I. M. Nazaryan, R. G. Paronikyan, “Synthesis and anticonvulsant activity of isothiazolo[5,4-b]pyrano(thiopyrano)[4,3-d]pyridine and isothiazolo[4,5-b]-2,7-naphthyridine derivatives,” Pharmaceutical Chemistry Journal, vol. 36, no. 9, pp. 465–467, 2002.
  • V. R. Firke, S. D., Firake, B. M., Chaudhari, R. Y., Patil, “Synthetic and pharmacological evaluation of some pyridine containing thiazolidinones,” Asian Journal of Research in Chemistry, vol. 2, no. 2, pp. 157–161, 2009.
  • J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, J P Tomé, “Phthalocyanine Thio‐Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochemistry and Photobiology, vol. 88, no. 3, pp. 537–547, 2012.
  • T. Keleş, B. Barut, A. Özel, Z. Biyiklioglu, “Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties,” Dyes and Pigments, vol. 164, pp. 372–383, May 2019.
  • B. X. Hoang, B. O. Han, W. H. Fang, H. D. Tran, C. Hoang, D. G. Shaw, T. Q. Nguyen, “The Rationality of Implementation of Dimethyl Sulfoxide as Differentiation-inducing Agent in Cancer Therapy,” Cancer Diagnosis & Prognosis, vol. 3, no. 1, pp. 1–8, Dec. 2022.
  • C. C. Lever, A. B. P., Leznoff, Phthalocyanines: Properties and Applications, First Edit. Nex York: VCH Publications, New York., 1996.
  • A. Ogunsipe, D. Maree, T. Nyokong, “Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives,” Journal of Molecular Structure, vol. 650, no. 1–3, pp. 131–140, 2003.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Improved singlet oxygen yields of new palladium phthalocyanines using sonochemistry and comparisons with photochemistry,” Polyhedron, vol. 206, p. 115351, 2021.
  • A. Ogunsipe, T. Nyokong, “Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives,” Journal of Molecular Structure, vol. 689, no. 1–2, pp. 89–97, 2004.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Improved singlet oxygen yields ofew palladium phthalocyanines using sonochemistry and comparisons with photochemistry,” Polyhedron, vol. 206, p. 115351, 2021.
Yıl 2024, Cilt: 28 Sayı: 5, 1022 - 1030
https://doi.org/10.16984/saufenbilder.1391232

Öz

Proje Numarası

FKD-2021-4759

Kaynakça

  • P. Yan, L. H. Liu, P. Wang,“Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor,” ACS Appl Bio Mater, vol. 3, no. 6, pp. 3456–3475, 2020.
  • I. P. F. Nunes, P. J. L. Crugeira, F. J. P. Sampaio, S. C. P. S. de Oliveira, J. M Azevedo, C. L. O. Santos, L. G. P. Soares, I. D. W. Samuel, S. Persheyev, P. F. de Ameida, A. L. B. Pinheiro, “Evaluation of dual application of photodynamic therapy-PDT in Candida albicans,” Photodiagnosis and Photodynamic Therapy, vol. 42, 2023.
  • Ö. D. Kutlu, A. Erdoğmuş, P. Şen, S. Z. Yıldız, “Peripherally tetra-Schiff base substituted metal-free and zinc (II) phthalocyanine, its water-soluble derivative: Synthesis, characterization, photo-physicochemical, aggregation properties and DNA/BSA binding activity,” Journal of Molecular Structure, vol. 1284, p. 135375, 2023.
  • N. Kocaaǧa, Ö. D. Kutlu, A. Erdoǧmuş, “New peripherally substituted lutetium mono and bis phthalocyanines: Synthesis and comparative photophysical and photochemical properties,” Journal of Porphyrins and Phthalocyanines ,vol. 23, no. 11n12, pp. 1099-1409, 2019.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Comparison of singlet oxygen production of ethyl vanillin substituted silicon phthalocyanine using sonophotodynamic and photodynamic methods,” Journal of Molecular Structure, vol. 1274, p. 134498, 2023.
  • C. McEwan, H. Nesbitt, D. Nicholas, O. N. Kavanagh, K.McKenna, P. Loan, I. G. Jack, A. P. McHale, J. F. Callan, “Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer,” Bioorganic & Medicinal Chemistry, vol. 24, no. 13, pp. 3023–3028, 2016.
  • N. Nomikou, K. Curtis, C. McEwan, B. M. G O'Hagan, B. Callan, J. F. Callan, A. P. McHale, “A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy,” Acta Biomaterialia, vol. 49, pp. 414–421, 2017.
  • M. Aksel, O. Bozkurt-Girit, M. D. Bilgin, “Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer,” Photodiagnosis and Photodynamic Therapy, vol. 31, p. 101909, 2020.
  • M. Aksel, Ö. Kesmez, A. Yavaş, M. D. Bilgin, “Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer,” Journal of Photochemistry and Photobiology B: Biology, vol. 225, p. 112333, 2021.
  • L. C. Nene, A. Magadla, T. Nyokong, “Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity,” Journal of Photochemistry and Photobiology B: Biology, vol. 235, p. 112553, 2022.
  • L. C. Nene, T. Nyokong, “Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro,” Photodiagnosis and Photodynamic Therapy, vol. 36, p. 102573, 2021.
  • K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, “Photophysics and photochemistry of photodynamic therapy: fundamental aspects,” Lasers in Medical Science, vol. 24, no. 2, pp. 259–268, Mar. 2009.
  • J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chemical Reviews, vol. 110, no. 5, pp. 2795–2838, May 2010.
  • J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chemical Reviews, vol. 110, no. 5, pp. 2839–2857, May 2010.
  • W. M. Sharman, C. M. Allen, J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today, vol. 4, no. 11, pp. 507–517, 1999.
  • H. Kolarova, K. Tomankova, R. Bajgar, P. Kolar, R. Kubinek, “Photodynamic and Sonodynamic Treatment by Phthalocyanine on Cancer Cell Lines,” Ultrasound in Medicine & Biology, vol. 35, no. 8, pp. 1397–1404, 2009.
  • F. Ayaz, D. Yetkin, A. Yüzer, K. Demircioğlu, M. Ince, “Non-canonical anti-cancer, anti-metastatic, anti-angiogenic and immunomodulatory PDT potentials of water soluble phthalocyanine derivatives with imidazole groups and their intracellular mechanism of action,” Photodiagnosis and Photodynamic Therapy, vol. 39, p. 103035, 2022.
  • J. Wang, M. Xu, M. Chen, Z. Jiang, G. Chen, “Study on sonodynamic activity of metallophthalocyanine sonosensitizers based on the sonochemiluminescence of MCLA,” Ultrasonics Sonochemistry, vol. 19, no. 2, pp. 237–242, 2012.
  • H.-N. Xu, H.-J. Chen, B.-Y. Zheng, Y.-Q. Zheng, M.-R. Ke, J.-D. Huang, “Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate,” Ultrasonics Sonochemistry, vol. 22, pp. 125–131, 2015.
  • J. D. Spikes, “Phthalocyanınes As Photosensıtızers In Bıologıcal Systems And For The Photodynamıc Therapy Of Tumors,” Photochemistry and Photobiology, vol. 43, no. 6, pp. 691–699, 1986.
  • D. Li, Q. Y. Hu, X. Z. Wang, X. Li, J. Q. Hu, B. Y. Zheng, M. R. Ke, J. D. Huang, “A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy,” Bioorganic & Medicinal Chemistry Letters, vol. 30, no. 12, p. 127164, 2020.
  • P. E. Alford, “Six-Membered Ring Systems: Pyridines and Benzo Derivatives,” 30, G.W. Gribble, J. A. Joule, Elsevier Inc 2011, pp. 349–391.
  • A. M. Rolim Bernardino, L. C. da Silva Pinheiro, C. R. Rodrigues, N. I.Loureiro, H. C. Castro, A. Lanfredi-Rangel, J. Sabatini-Lopes, J. C.Borges, J. M. Carvalho, G. A. Romeiro, V. F. Ferreira, C. P. P I. Frugulhetti, M. A. Vannier-Santos, “Design, synthesis, SAR, and biological evaluation of new 4-(phenylamino)thieno[2,3-b]pyridine derivatives,” Bioorganic & Medicinal Chemistry, vol. 14, no. 16, pp. 5765–5770, 2006.
  • M. Vrábel, M. Hocek, L. Havran, M. Fojta, I. Votruba, B. Klepetářová, R. Pohl, L. Rulíšek, L. Zendlová, P. Hobza, I. Shih, E. Mabery, R. Mackman, “Purines Bearing Phenanthroline or Bipyridine Ligands and Their RuII Complexes in Position 8 as Model Compounds for Electrochemical DNA Labeling – Synthesis, Crystal Structure, Electrochemistry, Quantum Chemical Calculations, Cytostatic and Antiviral Activ,” European Journal of Inorganic Chemistry, vol. 2007, no. 12, pp. 1752–1769, Apr. 2007.
  • E. G. Paronikyan, A. S. Noravyan, I. A. Dzhagatspanyan, I. M. Nazaryan, R. G. Paronikyan, “Synthesis and anticonvulsant activity of isothiazolo[5,4-b]pyrano(thiopyrano)[4,3-d]pyridine and isothiazolo[4,5-b]-2,7-naphthyridine derivatives,” Pharmaceutical Chemistry Journal, vol. 36, no. 9, pp. 465–467, 2002.
  • V. R. Firke, S. D., Firake, B. M., Chaudhari, R. Y., Patil, “Synthetic and pharmacological evaluation of some pyridine containing thiazolidinones,” Asian Journal of Research in Chemistry, vol. 2, no. 2, pp. 157–161, 2009.
  • J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, J P Tomé, “Phthalocyanine Thio‐Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochemistry and Photobiology, vol. 88, no. 3, pp. 537–547, 2012.
  • T. Keleş, B. Barut, A. Özel, Z. Biyiklioglu, “Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties,” Dyes and Pigments, vol. 164, pp. 372–383, May 2019.
  • B. X. Hoang, B. O. Han, W. H. Fang, H. D. Tran, C. Hoang, D. G. Shaw, T. Q. Nguyen, “The Rationality of Implementation of Dimethyl Sulfoxide as Differentiation-inducing Agent in Cancer Therapy,” Cancer Diagnosis & Prognosis, vol. 3, no. 1, pp. 1–8, Dec. 2022.
  • C. C. Lever, A. B. P., Leznoff, Phthalocyanines: Properties and Applications, First Edit. Nex York: VCH Publications, New York., 1996.
  • A. Ogunsipe, D. Maree, T. Nyokong, “Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives,” Journal of Molecular Structure, vol. 650, no. 1–3, pp. 131–140, 2003.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Improved singlet oxygen yields of new palladium phthalocyanines using sonochemistry and comparisons with photochemistry,” Polyhedron, vol. 206, p. 115351, 2021.
  • A. Ogunsipe, T. Nyokong, “Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives,” Journal of Molecular Structure, vol. 689, no. 1–2, pp. 89–97, 2004.
  • C. C. Karanlık, G. Y. Atmaca, A. Erdoğmuş, “Improved singlet oxygen yields ofew palladium phthalocyanines using sonochemistry and comparisons with photochemistry,” Polyhedron, vol. 206, p. 115351, 2021.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Öznur Dülger Kutlu 0000-0002-4387-1186

Proje Numarası FKD-2021-4759
Erken Görünüm Tarihi 18 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 15 Kasım 2023
Kabul Tarihi 26 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 5

Kaynak Göster

APA Dülger Kutlu, Ö. (2024). Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry. Sakarya University Journal of Science, 28(5), 1022-1030. https://doi.org/10.16984/saufenbilder.1391232
AMA Dülger Kutlu Ö. Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry. SAUJS. Ekim 2024;28(5):1022-1030. doi:10.16984/saufenbilder.1391232
Chicago Dülger Kutlu, Öznur. “Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison With Photochemistry”. Sakarya University Journal of Science 28, sy. 5 (Ekim 2024): 1022-30. https://doi.org/10.16984/saufenbilder.1391232.
EndNote Dülger Kutlu Ö (01 Ekim 2024) Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry. Sakarya University Journal of Science 28 5 1022–1030.
IEEE Ö. Dülger Kutlu, “Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry”, SAUJS, c. 28, sy. 5, ss. 1022–1030, 2024, doi: 10.16984/saufenbilder.1391232.
ISNAD Dülger Kutlu, Öznur. “Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison With Photochemistry”. Sakarya University Journal of Science 28/5 (Ekim 2024), 1022-1030. https://doi.org/10.16984/saufenbilder.1391232.
JAMA Dülger Kutlu Ö. Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry. SAUJS. 2024;28:1022–1030.
MLA Dülger Kutlu, Öznur. “Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison With Photochemistry”. Sakarya University Journal of Science, c. 28, sy. 5, 2024, ss. 1022-30, doi:10.16984/saufenbilder.1391232.
Vancouver Dülger Kutlu Ö. Improved Singlet Oxygen Production of Zinc Phthalocyanine Bearing Pyridine-4-Thiol Groups Using Sonochemistry and Comparison with Photochemistry. SAUJS. 2024;28(5):1022-30.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.