Araştırma Makalesi
BibTex RIS Kaynak Göster

Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities

Yıl 2024, Cilt: 28 Sayı: 6, 1178 - 1187
https://doi.org/10.16984/saufenbilder.1494769

Öz

The formation of advanced glycation end products (AGEs) is a pivotal factor in the development of various age-related and diabetes associated pathophysiologies, including but not limeted to arthritis, Alzheimer’s disease, atherosclerosis and cataracts. Consequently, the prospect of inhibiting AGE formation emerges as a viable strategy to prevent or halt the advancement of diabetic complications. In the scientific literature, there is still a reluctance to produce bioactive peptides demonstrating antiglycation activity from breast milk. The breast milk protein was hydrolysed using trypsin for 240 min. The antiglycation, metal chelating activity, lipid peroxidation activity, and antioxidant activity of the peptides in the hydrolysates obtained after hydrolysis of human milk with trypsin enzyme were performed. The peptide diversity obtained after hydrolysis was determined by RP-HPLC. The breast milk hydrolysate was demonstrated significant antiglycation activity (IC50: 312.8 ± 12.1 µg/mL), antioxidant activity (61.8±4.58 mM AAE/µg peptide) , metal chelation activity (24.4%/μg peptide). The hydrolysate effectively inhibited lipid peroxidation (30.5±0.12%) compared to Trolox (51.2±0.3%). These findings highlight the potential of breast milk protein hydrolysates as a source of bioactive peptides with diverse health benefits. The present study offers valuable insights into utilizing human milk peptides as novel functional food components.

Kaynakça

  • A. Jakubczyk, M. Karaś, K. Rybczyńska-Tkaczyk, E. Zielińska, D. Zieliński, “Current trends of bioactive peptides—New sources and therapeutic effect”, Foods., vol .9, pp. 846, 2020.
  • M. Akbarian, A. Khani, S. Eghbalpour, V. N. Uversky, “Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action”, International Journal of Molecular Sciences, vol. 23, pp. 1445, 2022.
  • S. Guha, H. Sharma, G. K. Deshwal, & P. S. Rao, “A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species”, Food Production, Processing, and Nutrition, vol.3, pp.1-21, 2021.
  • N. Barić, “Role of advanced glycation end products (AGEs) on the reactive oxygen species (ROS) generation in Alzheimer’s disease amyloid plaque”, Glycative Stress Res, vol. 2, pp.140-55, 2015.
  • R. Aluko, “Bioactive Peptides”. In: Functional Foods and Nutraceuticals. Food Science Text Series. Springer, New York, NY; 2012.
  • A. Zarban, F. Taheri, T. Chahkandi, G. Sharifzadeh, M. Khorashadizadeh, “Antioxidant and Radical Scavenging Activity of Human Colostrum, Transitional and Mature Milk”, Journal of Clinical Biochemistry and Nutrition, vol. 45 pp.150-154, 2009.
  • M. Churchill, H. Zawawi, I. Elisia, M. Seider, R. Noseworthy, A. Thompson, & S. Grant, “The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus”, Antioxidants (Basel), vol.12, pp.842, 2023.
  • O. Ballard, A. L. Morrow, “Human milk composition: Nutrients and bioactive factors”, Pediatric Clinics, vol. 60, pp. 49-74, 2013.
  • F. Muñoz-Salinas, H. M. Andrade-Montemayor, K. De la Torre-Carbot, M. Á. Duarte-Vázquez, J. C. Silva-Jarquin, “Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition”, Animals, vol. 12, pp.2236, 2022.
  • Y. Wada, B. Lönnerdal, “Bioactive peptides derived from human milk proteins—mechanisms of action”, The Journal of Nutritional Biochemistry, vol. 25, pp. 503-514, 2014.
  • P. M. Nielsen, D. Petersen, C. J. J. O. F. S. Dambmann, “Improved method for determining food protein degree of hydrolysis”, Journal of Food Science, vol.66, pp. 642-646, 2001.
  • P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano & D. C. Klenk, “Measurement of protein using bicinchoninic acid” Analytical Biochemistry, vol. 150, pp.76–85, 1985.
  • R. Apak, K. Güçlü, M. Özyürek, S. E. N. Karademir, M. Altun, “Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method”, Free Radical Research, vol. 39, pp. 949-961, 2005.
  • M. Karamac, “Fe [II], Cu [II] and Zn [II] chelating activity of buckwheat and buckwheat groats tannin fractions”, Polish Journal of Food and Nutrition Sciences, vol. 57, pp. 357-362, 2007.
  • Q. Li, L. Wei, J. Zhang, G. Gu, Z. Guo, “Significantly enhanced antioxidant activity of chitosan through chemical modification with coumarins”, Polymer Chemistry, vol. 10, pp. 1480-1488, 2019.
  • R. K. C. Jeewanthi, M. H. Kim, N.K. Lee, Y. C. Yoon, H. D. Paik, “Peptide analysis and the bioactivity of whey protein hydrolysates from cheese whey with several enzymes”, Korean Journal for Food Science of Animal Resources, vol. 37, pp. 62-70, 2017.
  • S. M. Kamau, R. R. Lu, “The effect of enzymes and hydrolysis conditions on the degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates”, Current Research in Dairy Sciences, vol. 3, pp. 25-35, 2011.
  • Z. Jrad, J. M. Girardet, I. Adt, N. Oulahal, P. Degraeve, T. Khorchani, H. El Hatmi, “Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion”, Mljekarstvo, vol. 64, pp. 287–294, 2014.
  • Q. Song, J. Liu, L. Dong, X. Wang, X. Zhang, “Novel advances in inhibiting advanced glycation end product formation using natural compounds”, Biomedicine & Pharmacotherapy, vol. 140, pp. 111750, 2021.
  • Q. Wu, Z. Guo, Z. Zhou, M. Jin, Q. Li, X. Zhou, “Recent advances in bioactive peptides from cereal-derived Foodstuffs”, International Journal of Food Sciences and Nutrition, vol.73, pp. 875–888, 2022.
  • [21] X. Xu, A. Liu, S. Hu, I. Ares, M. R. Martínez-Larrañaga, X. Wang, M. Martinez, A. Anadón, M. A. Martínez, “Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action.” Food Chemistry, vol. 353, pp. 129488, 2021.
  • H. R. Ibrahim, H. Isono, T. Miyata, “Potential antioxidant bioactive peptides from camel milk proteins”, Animal Nutrition, vol. 4, pp. 273–280, 2018.
  • L. T. C. Santiago, N. A. D. Freitas, J. D. D. Meira Junior, J. E. Corrente, V. G. Paula, D. C. Damasceno, L. M. S. de Souza Rugolo, “Oxidative status in colostrum and mature breast milk related to gestational age and fetal growth” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 36, pp. 2183763, 2023.
  • K. Miloudi, A. Tsopmo, J. K. Friel, T. Rouleau, B. Comte, J. C. Lavoie, “Hexapeptides from human milk prevent the induction of oxidative stress from parenteral nutrition in the newborn guinea pig”, Pediatric Research, vol. 71, pp. 675-681, 2012.
  • M. R. Oveisi, N. Sadeghi, B. Jannat, M. Hajimahmoodi, F. Jannat, F. MokhtariNasab, “Human breast milk provides better antioxidant capacity than infant formula” Iranian Journal of Pharmaceutical Research, vol. 9, pp. 445-449, 2010.
  • O. Power, P. Jakeman, R. J. FitzGerald, “Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides”, Amino Acids, vol. 44, pp. 797-820, 2013.
  • Z. Narmuratova, F. Hentati, J. M. Girardet, M. Narmuratova, C. Cakir-Kiefer, “Equine lactoferrin: Antioxidant properties related to divalent metal chelation”, LWT. 2022; 161: 113426.
  • A. P. F. Corrêa, D. J. Daroit, J. Coelho, S. M. Meira, F. C. Lopes, J. Segalin, P. H. Rissoet, A. Brandelli, “Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease”, Journal of the Science of Food and Agriculture, vol. 91, pp. 2247-2254, 2011.
  • G. J. Kontoghiorghes, C. N. Kontoghiorghe, “Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases”, Cells, vol. 9, pp. 1456, 2020.
  • J. A. D. De Leon, C. R. Borges, “Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay”, Journal of Visualized Experiments, vol. 159, pp. e61122, 2020.
  • E. A. Peña-Ramos, Y. L. Xiong, “Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties”, Meat Science, vol. 64, pp. 259–263, 2003.
  • W. Carrillo, X. Guzmán, E.Vilcacundo, “Native and heated hydrolysates of milk proteins and their capacity to inhibit lipid peroxidation in the zebrafish larvae model”, Foods, vol. 6, pp. 81, 2017.
  • D. Tagliazucchi, A. Helal, E. Verzelloni, A. Conte, “Bovine milk antioxidant properties: Effect of in vitro digestion and identification of antioxidant compounds”, Dairy Science & Technology, vol. 96, pp. 657-676, 2016.
Yıl 2024, Cilt: 28 Sayı: 6, 1178 - 1187
https://doi.org/10.16984/saufenbilder.1494769

Öz

Kaynakça

  • A. Jakubczyk, M. Karaś, K. Rybczyńska-Tkaczyk, E. Zielińska, D. Zieliński, “Current trends of bioactive peptides—New sources and therapeutic effect”, Foods., vol .9, pp. 846, 2020.
  • M. Akbarian, A. Khani, S. Eghbalpour, V. N. Uversky, “Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action”, International Journal of Molecular Sciences, vol. 23, pp. 1445, 2022.
  • S. Guha, H. Sharma, G. K. Deshwal, & P. S. Rao, “A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species”, Food Production, Processing, and Nutrition, vol.3, pp.1-21, 2021.
  • N. Barić, “Role of advanced glycation end products (AGEs) on the reactive oxygen species (ROS) generation in Alzheimer’s disease amyloid plaque”, Glycative Stress Res, vol. 2, pp.140-55, 2015.
  • R. Aluko, “Bioactive Peptides”. In: Functional Foods and Nutraceuticals. Food Science Text Series. Springer, New York, NY; 2012.
  • A. Zarban, F. Taheri, T. Chahkandi, G. Sharifzadeh, M. Khorashadizadeh, “Antioxidant and Radical Scavenging Activity of Human Colostrum, Transitional and Mature Milk”, Journal of Clinical Biochemistry and Nutrition, vol. 45 pp.150-154, 2009.
  • M. Churchill, H. Zawawi, I. Elisia, M. Seider, R. Noseworthy, A. Thompson, & S. Grant, “The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus”, Antioxidants (Basel), vol.12, pp.842, 2023.
  • O. Ballard, A. L. Morrow, “Human milk composition: Nutrients and bioactive factors”, Pediatric Clinics, vol. 60, pp. 49-74, 2013.
  • F. Muñoz-Salinas, H. M. Andrade-Montemayor, K. De la Torre-Carbot, M. Á. Duarte-Vázquez, J. C. Silva-Jarquin, “Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition”, Animals, vol. 12, pp.2236, 2022.
  • Y. Wada, B. Lönnerdal, “Bioactive peptides derived from human milk proteins—mechanisms of action”, The Journal of Nutritional Biochemistry, vol. 25, pp. 503-514, 2014.
  • P. M. Nielsen, D. Petersen, C. J. J. O. F. S. Dambmann, “Improved method for determining food protein degree of hydrolysis”, Journal of Food Science, vol.66, pp. 642-646, 2001.
  • P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano & D. C. Klenk, “Measurement of protein using bicinchoninic acid” Analytical Biochemistry, vol. 150, pp.76–85, 1985.
  • R. Apak, K. Güçlü, M. Özyürek, S. E. N. Karademir, M. Altun, “Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method”, Free Radical Research, vol. 39, pp. 949-961, 2005.
  • M. Karamac, “Fe [II], Cu [II] and Zn [II] chelating activity of buckwheat and buckwheat groats tannin fractions”, Polish Journal of Food and Nutrition Sciences, vol. 57, pp. 357-362, 2007.
  • Q. Li, L. Wei, J. Zhang, G. Gu, Z. Guo, “Significantly enhanced antioxidant activity of chitosan through chemical modification with coumarins”, Polymer Chemistry, vol. 10, pp. 1480-1488, 2019.
  • R. K. C. Jeewanthi, M. H. Kim, N.K. Lee, Y. C. Yoon, H. D. Paik, “Peptide analysis and the bioactivity of whey protein hydrolysates from cheese whey with several enzymes”, Korean Journal for Food Science of Animal Resources, vol. 37, pp. 62-70, 2017.
  • S. M. Kamau, R. R. Lu, “The effect of enzymes and hydrolysis conditions on the degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates”, Current Research in Dairy Sciences, vol. 3, pp. 25-35, 2011.
  • Z. Jrad, J. M. Girardet, I. Adt, N. Oulahal, P. Degraeve, T. Khorchani, H. El Hatmi, “Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion”, Mljekarstvo, vol. 64, pp. 287–294, 2014.
  • Q. Song, J. Liu, L. Dong, X. Wang, X. Zhang, “Novel advances in inhibiting advanced glycation end product formation using natural compounds”, Biomedicine & Pharmacotherapy, vol. 140, pp. 111750, 2021.
  • Q. Wu, Z. Guo, Z. Zhou, M. Jin, Q. Li, X. Zhou, “Recent advances in bioactive peptides from cereal-derived Foodstuffs”, International Journal of Food Sciences and Nutrition, vol.73, pp. 875–888, 2022.
  • [21] X. Xu, A. Liu, S. Hu, I. Ares, M. R. Martínez-Larrañaga, X. Wang, M. Martinez, A. Anadón, M. A. Martínez, “Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action.” Food Chemistry, vol. 353, pp. 129488, 2021.
  • H. R. Ibrahim, H. Isono, T. Miyata, “Potential antioxidant bioactive peptides from camel milk proteins”, Animal Nutrition, vol. 4, pp. 273–280, 2018.
  • L. T. C. Santiago, N. A. D. Freitas, J. D. D. Meira Junior, J. E. Corrente, V. G. Paula, D. C. Damasceno, L. M. S. de Souza Rugolo, “Oxidative status in colostrum and mature breast milk related to gestational age and fetal growth” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 36, pp. 2183763, 2023.
  • K. Miloudi, A. Tsopmo, J. K. Friel, T. Rouleau, B. Comte, J. C. Lavoie, “Hexapeptides from human milk prevent the induction of oxidative stress from parenteral nutrition in the newborn guinea pig”, Pediatric Research, vol. 71, pp. 675-681, 2012.
  • M. R. Oveisi, N. Sadeghi, B. Jannat, M. Hajimahmoodi, F. Jannat, F. MokhtariNasab, “Human breast milk provides better antioxidant capacity than infant formula” Iranian Journal of Pharmaceutical Research, vol. 9, pp. 445-449, 2010.
  • O. Power, P. Jakeman, R. J. FitzGerald, “Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides”, Amino Acids, vol. 44, pp. 797-820, 2013.
  • Z. Narmuratova, F. Hentati, J. M. Girardet, M. Narmuratova, C. Cakir-Kiefer, “Equine lactoferrin: Antioxidant properties related to divalent metal chelation”, LWT. 2022; 161: 113426.
  • A. P. F. Corrêa, D. J. Daroit, J. Coelho, S. M. Meira, F. C. Lopes, J. Segalin, P. H. Rissoet, A. Brandelli, “Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease”, Journal of the Science of Food and Agriculture, vol. 91, pp. 2247-2254, 2011.
  • G. J. Kontoghiorghes, C. N. Kontoghiorghe, “Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases”, Cells, vol. 9, pp. 1456, 2020.
  • J. A. D. De Leon, C. R. Borges, “Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay”, Journal of Visualized Experiments, vol. 159, pp. e61122, 2020.
  • E. A. Peña-Ramos, Y. L. Xiong, “Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties”, Meat Science, vol. 64, pp. 259–263, 2003.
  • W. Carrillo, X. Guzmán, E.Vilcacundo, “Native and heated hydrolysates of milk proteins and their capacity to inhibit lipid peroxidation in the zebrafish larvae model”, Foods, vol. 6, pp. 81, 2017.
  • D. Tagliazucchi, A. Helal, E. Verzelloni, A. Conte, “Bovine milk antioxidant properties: Effect of in vitro digestion and identification of antioxidant compounds”, Dairy Science & Technology, vol. 96, pp. 657-676, 2016.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makalesi
Yazarlar

Ebru Kocadağ Kocazorbaz 0000-0001-5611-5235

Erken Görünüm Tarihi 13 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 3 Haziran 2024
Kabul Tarihi 5 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 6

Kaynak Göster

APA Kocadağ Kocazorbaz, E. (2024). Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities. Sakarya University Journal of Science, 28(6), 1178-1187. https://doi.org/10.16984/saufenbilder.1494769
AMA Kocadağ Kocazorbaz E. Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities. SAUJS. Kasım 2024;28(6):1178-1187. doi:10.16984/saufenbilder.1494769
Chicago Kocadağ Kocazorbaz, Ebru. “Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities”. Sakarya University Journal of Science 28, sy. 6 (Kasım 2024): 1178-87. https://doi.org/10.16984/saufenbilder.1494769.
EndNote Kocadağ Kocazorbaz E (01 Kasım 2024) Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities. Sakarya University Journal of Science 28 6 1178–1187.
IEEE E. Kocadağ Kocazorbaz, “Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities”, SAUJS, c. 28, sy. 6, ss. 1178–1187, 2024, doi: 10.16984/saufenbilder.1494769.
ISNAD Kocadağ Kocazorbaz, Ebru. “Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities”. Sakarya University Journal of Science 28/6 (Kasım 2024), 1178-1187. https://doi.org/10.16984/saufenbilder.1494769.
JAMA Kocadağ Kocazorbaz E. Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities. SAUJS. 2024;28:1178–1187.
MLA Kocadağ Kocazorbaz, Ebru. “Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities”. Sakarya University Journal of Science, c. 28, sy. 6, 2024, ss. 1178-87, doi:10.16984/saufenbilder.1494769.
Vancouver Kocadağ Kocazorbaz E. Exploring the Functional Potential of Breast Milk Protein Hydrolysates: Antiglycation, Antioxidant, Metal Chelation, and Lipid Peroxidation Activities. SAUJS. 2024;28(6):1178-87.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.