Berezin Yarıçapı İçin Diğer Eşitsizlikler
Year 2023,
, 28 - 40, 22.06.2023
Hamdullah Başaran
,
Mehmet Gürdal
Abstract
İşlevsel Hilbert uzayları, istatistik, yaklaşım teorisi, grup temsili teorisi, vb. dahil olmak üzere birçok alanda ortaya çıkar. İşlevsel Hilbert uzay sayesinde tanımlanan Berezin dönüşümü ise, düzgün fonksiyonları analitik fonksiyonların Hilbert uzayları üzerindeki operatörlerle ilişkilerini inceler. Berezin yarıçapını ve Berezin normunu karakterize etmek için bazı çalışmalarda birçok eşitsizlik ve bunların özellikleri vardır. Bu çalışmada fonksiyonel bir Hilbert uzayı üzerinde tanımlanan sınırlı lineer operatörlerin Berezin normu ve Berezin sayısı için yeni eşitsizlikler sunulmuştur. Bu makalenin benzersizliği veya yeniliği, iki operatör için yeni Berezin sayıları tahminlerinden oluşmaktadır. Bu tahminler, diğer benzer makaleler tarafından elde edilen Berezin sayılarının üst sınırlarını iyileştirmiştir. Daha sonra El-Haddad and Kittaneh ([10]) tarafından verilen eşitsizlik genelleştirilmiş ve iyileştirilmiştir. Bu çalışmada fikir ve sunulan metodolojiler, bu alanda gelecekteki araştırmalar için bir başlangıç noktası olarak hizmet edebilir.
Supporting Institution
Süleyman Demirel Üniversitesi
Project Number
FDK-2022-8878
References
- S. Abramovich, G. Jameson, and G. Sinnamon, “Inequalities for averages of convex and superquadratic function”, J. Inequal. Pure Appl. Math., 5(4), 1-14, 2004.
- J. S. Aujla and F. Silva, “Weak majorization inequalities and convex functions”, Linear Algebra Appl., 369, 217-233, 2003.
- F. A. Berezin, “Covariant and contravariant symbols for operators”, Math. USSR-Izvestiya, 6, 1117-1151, 1972.
- H. Başaran, M. Gürdal, A. N. Güncan, “Some operator inequalities associated with Kantorovich and Hö lder-McCarthy inequalities and their Applications”, Turkish J. Math., 43(1), 523-532, 2019.
- H. Başaran and M. Gürdal, “Berezin number inequalities via inequality”, Honam Math. J., 43(3), 523-537, 2021.
- H. Başaran and V. Gürdal, “Berezin radius and Cauchy-Schwarz inequality”, Montes Taurus J. Pure Appl. Math., 5(3), 16-22, 2023.
- H. Başaran, M. B. Huban and M. Gürdal, “Inequalities related to Berezin norm and Berezin number of operators”, Bull. Math. Anal. App., 14(2), 1-11, 2022.
- I. Chalendar, E. Fricain, M. Gürdal and M. Karaev, "Compactness and Berezin symbols", Acta Sci. Math. (Szeged), 78(1), 315-329, 2012.
- S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert spaces, Melbourne, Springer, 2013.
- M. El-Haddad and F. Kittaneh, “Numerical radius inequalities for Hilbert space operators II”, Studia Math., 182(2), 133-140, 2007.
- S. Furuichi, “Further improvements of Young inequality”, Rev. R. Acad. Ciene. Exactas Fís. Nat. Ser. A Mat., 113, 255-266, 2019.
- S. Furuichi and H. R. Moradi, “On further refinements for Young inequalities”, Open Math., 16, 1478-1482, 2018.
- S. Furuichi, H. R. Moradi and M. Sababheh, “New sharp inequalities for operator means”, Linear Multilinear Algebra, 67(8), 1567-1578, 2019.
- M. T. Garayev, M. Gürdal and A. Okudan, “Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators”, Math. Inequal. Appl., 19, 883-891, 2016.
- M. T. Garayev, M. Gürdal and S. Saltan, “Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems”, Positivity, 21, 1615-1623, 2017.
- M. Garayev, F. Bouzeffour, M. Gürdal and C. M. Yangöz, “Refinements of Kantorovich type, Schwarz and Berezin number inequalities”, Extracta Math., 35, 1-20, 2020.
- M. T. Garayev, H. Guedri, M. Gürdal and G. M. Alsahli, “On some problems for operators on the reproducing kernel Hilbert space”, Linear Multilinear Algebra, 69(11), 2059-2077, 2021.
- K. E. Gustafson and D. K. M. Rao, Numerical Range: The field of Values of Linear Operators and Matrices, Universitext. Springer-Verlag, New York, 1997.
- M. B. Huban, H. Başaran and M. Gürdal, “New upper bounds related to the Berezin number inequalities”, J. Inequal. Spec. Funct., 12(3), 1-12, 2021.
- M. B. Huban, H. Başaran and M. Gürdal, “Some new inequalities via Berezin numbers”, Turk. J. Math. Comput. Sci., 14(1), 129-137, 2022.
- F. Kittaneh, “Notes on some inequalities for Hilbert space operators”, Publ. RIMS Kyoto Univ., 24, 283-293, 1988.
- M. T. Karaev, “Berezin symbol and invertibility of operators on the functional Hilbert spaces”, J. Funct. Anal., 238, 181-192, 2006.
- M. T. Karaev and M. Gürdal, “On the Berezin symbols and Toeplitz operators”, Extracta Math., 25(1), 83-102, 2010.
- M. Karaev, M. Gürdal and U. Yamancı, “Some results related with Berezin symbols and Toeplitz operators”, Math. Inequal. Appl., 17(3), 1031-1045, 2014.
- B. Mond and J. Pečarić, “On Jensen's inequality for operator convex functions”, Houston J. Math., 21, 739-753, 1995.
- S. Tafazoli, H. R. Moradi, S. Furuichi and P. Harikrishnan, “Further inequalities for the numerical radius of Hilbert space operators”, J. Math. Inequal., 13(4), 955-967, 2019.
- A. Taghavi, T. A. Roushan and V. Darvish, “Some upper bound for the Berezin number of Hilbert space operators”, Filomat, 33(14), 4353-4360, 2019.
- U. Yamancı, R. Tunç and M. Gürdal, “Berezin number, Grüss-type inequalities and their applications”, Bull. Malaysian Math. Sci. Soc., 43(3), 2287-2296, 2020.
Further Inequalties For The Berezin Radius
Year 2023,
, 28 - 40, 22.06.2023
Hamdullah Başaran
,
Mehmet Gürdal
Abstract
Functional Hilbert spaces are encountered in a variety of fields, including statistics, approximation theory, group representation theory, and so on. Smooth functions are associated with operators on Hilbert spaces of analytic functions through the Berezin transform defined by functional Hilbert space. We present new inequalities for the Berezin norm and Berezin number of limited linear operators defined on a functional Hilbert space in this study. We discovered various inequalities and their features in some papers to characterize the Berezin number and the Berezin norm. This article's originality or novelty consists of fresh Berezin number estimations for two operators. These estimates improve on the upper bounds of the Berezin numbers found in previous studies. The inequality given by El-Haddad and Kittaneh ([10]) is then improved and generalized after that. The concepts and approaches offered in this paper may serve as a starting point for future research in this field.
Project Number
FDK-2022-8878
References
- S. Abramovich, G. Jameson, and G. Sinnamon, “Inequalities for averages of convex and superquadratic function”, J. Inequal. Pure Appl. Math., 5(4), 1-14, 2004.
- J. S. Aujla and F. Silva, “Weak majorization inequalities and convex functions”, Linear Algebra Appl., 369, 217-233, 2003.
- F. A. Berezin, “Covariant and contravariant symbols for operators”, Math. USSR-Izvestiya, 6, 1117-1151, 1972.
- H. Başaran, M. Gürdal, A. N. Güncan, “Some operator inequalities associated with Kantorovich and Hö lder-McCarthy inequalities and their Applications”, Turkish J. Math., 43(1), 523-532, 2019.
- H. Başaran and M. Gürdal, “Berezin number inequalities via inequality”, Honam Math. J., 43(3), 523-537, 2021.
- H. Başaran and V. Gürdal, “Berezin radius and Cauchy-Schwarz inequality”, Montes Taurus J. Pure Appl. Math., 5(3), 16-22, 2023.
- H. Başaran, M. B. Huban and M. Gürdal, “Inequalities related to Berezin norm and Berezin number of operators”, Bull. Math. Anal. App., 14(2), 1-11, 2022.
- I. Chalendar, E. Fricain, M. Gürdal and M. Karaev, "Compactness and Berezin symbols", Acta Sci. Math. (Szeged), 78(1), 315-329, 2012.
- S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert spaces, Melbourne, Springer, 2013.
- M. El-Haddad and F. Kittaneh, “Numerical radius inequalities for Hilbert space operators II”, Studia Math., 182(2), 133-140, 2007.
- S. Furuichi, “Further improvements of Young inequality”, Rev. R. Acad. Ciene. Exactas Fís. Nat. Ser. A Mat., 113, 255-266, 2019.
- S. Furuichi and H. R. Moradi, “On further refinements for Young inequalities”, Open Math., 16, 1478-1482, 2018.
- S. Furuichi, H. R. Moradi and M. Sababheh, “New sharp inequalities for operator means”, Linear Multilinear Algebra, 67(8), 1567-1578, 2019.
- M. T. Garayev, M. Gürdal and A. Okudan, “Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators”, Math. Inequal. Appl., 19, 883-891, 2016.
- M. T. Garayev, M. Gürdal and S. Saltan, “Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems”, Positivity, 21, 1615-1623, 2017.
- M. Garayev, F. Bouzeffour, M. Gürdal and C. M. Yangöz, “Refinements of Kantorovich type, Schwarz and Berezin number inequalities”, Extracta Math., 35, 1-20, 2020.
- M. T. Garayev, H. Guedri, M. Gürdal and G. M. Alsahli, “On some problems for operators on the reproducing kernel Hilbert space”, Linear Multilinear Algebra, 69(11), 2059-2077, 2021.
- K. E. Gustafson and D. K. M. Rao, Numerical Range: The field of Values of Linear Operators and Matrices, Universitext. Springer-Verlag, New York, 1997.
- M. B. Huban, H. Başaran and M. Gürdal, “New upper bounds related to the Berezin number inequalities”, J. Inequal. Spec. Funct., 12(3), 1-12, 2021.
- M. B. Huban, H. Başaran and M. Gürdal, “Some new inequalities via Berezin numbers”, Turk. J. Math. Comput. Sci., 14(1), 129-137, 2022.
- F. Kittaneh, “Notes on some inequalities for Hilbert space operators”, Publ. RIMS Kyoto Univ., 24, 283-293, 1988.
- M. T. Karaev, “Berezin symbol and invertibility of operators on the functional Hilbert spaces”, J. Funct. Anal., 238, 181-192, 2006.
- M. T. Karaev and M. Gürdal, “On the Berezin symbols and Toeplitz operators”, Extracta Math., 25(1), 83-102, 2010.
- M. Karaev, M. Gürdal and U. Yamancı, “Some results related with Berezin symbols and Toeplitz operators”, Math. Inequal. Appl., 17(3), 1031-1045, 2014.
- B. Mond and J. Pečarić, “On Jensen's inequality for operator convex functions”, Houston J. Math., 21, 739-753, 1995.
- S. Tafazoli, H. R. Moradi, S. Furuichi and P. Harikrishnan, “Further inequalities for the numerical radius of Hilbert space operators”, J. Math. Inequal., 13(4), 955-967, 2019.
- A. Taghavi, T. A. Roushan and V. Darvish, “Some upper bound for the Berezin number of Hilbert space operators”, Filomat, 33(14), 4353-4360, 2019.
- U. Yamancı, R. Tunç and M. Gürdal, “Berezin number, Grüss-type inequalities and their applications”, Bull. Malaysian Math. Sci. Soc., 43(3), 2287-2296, 2020.