Research Article
BibTex RIS Cite
Year 2024, , 1 - 7, 27.05.2024
https://doi.org/10.29233/sdufeffd.1396580

Abstract

References

  • E. Behrends, et al, L^p-structure in real Banach spaces, Lecture Notes in Mathematics, 613, Berlin-New-York, Springer-Verlag, 1977.
  • S. Bochner and R.E. Taylor, “Linear functionals on certain spaces of abstractly-valued functions”, Annals of Mathematics, 39(2), 913-944, 1938.
  • F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, Springer-Verlag, 1973.
  • M. Cambern and P. Greim, “The bidual of C(X,E)”, Proceedings of the American Mathematical Society, 85, 53-58, 1982.
  • M. Cambern and P. Greim, “The dual of a space of vector measures”, Mathematische Zeitschrift, 180, 373-378, 1982.
  • B. Cengiz, “On the duals of Lebesgue-Bochner L^p spaces”, Proceedings of the American Mathematical Society, 114, 923-926, 1992.
  • B. Cengiz, “The isometries of the Bochner space L^p (μ,H) ”, Turkish Journal of Mathematics, 23(3), 1999.
  • J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical Surveys and Monographs no.15, American Mathematical Society., Providence, Rhode Island, 1977.
  • Dinculeanu N., Vector Measures, New-York, Pergamon Press, 1967.
  • J. Dixmier, “Sur certains espaces considérés par M.H. Stone, Summa Brasiliensis Mathematicae, 2(11) , 151-182, 1951.
  • J. Dugundji, Topology, Boston, Allyn and Bacon Inc., 1966.
  • N. Dunford and J. T. Schwartz, Linear Operators, Part I, New York, Interscience, 1958.
  • N. E. Gretsky and J. J. Uhl Jr., “Bounded linear operators on Banach function spaces of vector-valued functions”, Transactions American Mathematical Society, 167, 263-277, 1972.
  • E. Hewitt , K. Stromberg, Real and Abstract Analysis, New York, Springer-Verlag, 1965.
  • L. Gilman and M. Jerison, Rings of Continuous Functions, Princeton-Toronto-London-Melbourne, D. Van Nostrand Company, 1960.
  • H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Berlin- Heidelberg-New York, Springer-Verlag, 1974.
  • M. A. Naimark, Normed Algebras, The Netherlands, Wolters-Noordhoff Publishing, 1972.
  • B. J. Pettis, “On integration in vector measures”, Transactions American Mathematical Society, 44, 277-304, 1938.
  • H. L. Royden, Real Analysis, 3rd ed., London-New York, Collier-Macmillan, 1988.
  • H. H. Schaefer, Banach Lattices and Positive Operators, Berlin-Heidelberg-New York, Springer-Verlag, 1974.
  • B. Güntürk, B. Cengiz, “On some properties of hyperstonean spaces”, Turkish Journal of Mathematics, 5(42), 2288-2295, 2018.

L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions

Year 2024, , 1 - 7, 27.05.2024
https://doi.org/10.29233/sdufeffd.1396580

Abstract

It is proved that for any decomposable perfect measure space (𝑍, 𝒜, 𝜇), the space 𝐿𝜔∗∞ (𝜇, 𝐸*) of essentially bounded weak* measurable functions on 𝑍 to 𝐸* is linearly isometric to the space 𝐶(𝑍,𝐸∗*) of continuous functions on 𝑍 to 𝐸∗*, the latter space is being provided with the supremum norm ‖𝑔‖∞ = sup𝑧∈𝑍‖𝑔(𝑧)‖⁡ where 𝐸∗* stands for the space 𝐸* endowed with its weak* topology.

Thanks

I am grateful to my teacher, the late Prof. Bahaettin Cengiz, who made a valuable contribution to this article.

References

  • E. Behrends, et al, L^p-structure in real Banach spaces, Lecture Notes in Mathematics, 613, Berlin-New-York, Springer-Verlag, 1977.
  • S. Bochner and R.E. Taylor, “Linear functionals on certain spaces of abstractly-valued functions”, Annals of Mathematics, 39(2), 913-944, 1938.
  • F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, Springer-Verlag, 1973.
  • M. Cambern and P. Greim, “The bidual of C(X,E)”, Proceedings of the American Mathematical Society, 85, 53-58, 1982.
  • M. Cambern and P. Greim, “The dual of a space of vector measures”, Mathematische Zeitschrift, 180, 373-378, 1982.
  • B. Cengiz, “On the duals of Lebesgue-Bochner L^p spaces”, Proceedings of the American Mathematical Society, 114, 923-926, 1992.
  • B. Cengiz, “The isometries of the Bochner space L^p (μ,H) ”, Turkish Journal of Mathematics, 23(3), 1999.
  • J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical Surveys and Monographs no.15, American Mathematical Society., Providence, Rhode Island, 1977.
  • Dinculeanu N., Vector Measures, New-York, Pergamon Press, 1967.
  • J. Dixmier, “Sur certains espaces considérés par M.H. Stone, Summa Brasiliensis Mathematicae, 2(11) , 151-182, 1951.
  • J. Dugundji, Topology, Boston, Allyn and Bacon Inc., 1966.
  • N. Dunford and J. T. Schwartz, Linear Operators, Part I, New York, Interscience, 1958.
  • N. E. Gretsky and J. J. Uhl Jr., “Bounded linear operators on Banach function spaces of vector-valued functions”, Transactions American Mathematical Society, 167, 263-277, 1972.
  • E. Hewitt , K. Stromberg, Real and Abstract Analysis, New York, Springer-Verlag, 1965.
  • L. Gilman and M. Jerison, Rings of Continuous Functions, Princeton-Toronto-London-Melbourne, D. Van Nostrand Company, 1960.
  • H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Berlin- Heidelberg-New York, Springer-Verlag, 1974.
  • M. A. Naimark, Normed Algebras, The Netherlands, Wolters-Noordhoff Publishing, 1972.
  • B. J. Pettis, “On integration in vector measures”, Transactions American Mathematical Society, 44, 277-304, 1938.
  • H. L. Royden, Real Analysis, 3rd ed., London-New York, Collier-Macmillan, 1988.
  • H. H. Schaefer, Banach Lattices and Positive Operators, Berlin-Heidelberg-New York, Springer-Verlag, 1974.
  • B. Güntürk, B. Cengiz, “On some properties of hyperstonean spaces”, Turkish Journal of Mathematics, 5(42), 2288-2295, 2018.
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Makaleler
Authors

Banu Güntürk 0000-0002-7728-7228

Publication Date May 27, 2024
Submission Date November 27, 2023
Acceptance Date December 16, 2023
Published in Issue Year 2024

Cite

IEEE B. Güntürk, “L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 19, no. 1, pp. 1–7, 2024, doi: 10.29233/sdufeffd.1396580.