Research Article
BibTex RIS Cite

Bazı Biyolojik Bileşiklerin Kütlesel Enerji Soğurma Katsayılarının Monte Carlo Yöntemiyle Hesaplanması

Year 2021, , 416 - 423, 25.11.2021
https://doi.org/10.29233/sdufeffd.946343

Abstract

Bu çalışma, insan vücudundaki organ ve dokuların bileşiminde yer alan on üç biyolojik bileşik için kütlesel enerji soğurma katsayılarının Monte Carlo yöntemi kullanılarak hesaplanmasını amaçlamaktadır. MCNP radyasyon taşıma yazılımı ile gerçekleştirilen simülasyonlarda, kare prizma şeklinde bir soğurucu malzeme üzerine paralel bir foton demeti yönlendirilerek, tek enerjili bir noktasal foton kaynak geometrisi kullanılmıştır. Problem geometrisindeki tüm bileşenler, hedef soğurucu dışındaki malzemelerde gerçekleşebilecek etkileşimleri önlemek için bir vakum küresi (r=100 cm) ile çevrelenmiştir. 10 keV-20 MeV aralığında yirmi sekiz farklı foton enerjisinde gerçekleştirilen simülasyonlar sonucunda elde edilen µen/ρ değerleri NIST tablolarından elde edilen değerler ile kıyaslanmış ve uyumlu bulunmuştur. Bu yöntemin kütlesel enerji soğurma katsayıları literatürde yer almayan malzeme bileşimleri ve enerji değerleri için alternatif bir hesaplama aracı olarak kullanılabileceği düşünülmektedir.

References

  • [1] T. E. Johnson, Introduction to Health Physics, New York, NY: McGraw-Hill Education, 2017.
  • [2] J. K. Shultis and R. E. Faw, Fundamentals of Nuclear Science and Engineering, New York, NY: Marcel Dekker, 2002.
  • [3] J. H. Hubbell, “Photon mass attenuation and energy-absorption coefficients,” Int. J. Appl. Radiat. Isot., 33, 269-1290, 1982.
  • [4] M. J. Berger and J. Hubbell, XCOM: Photon cross sections on a personal computer, NBSIR-87-3597, National Bureau of Standards, Washington, DC (USA). 1987.
  • [5] C. Sureka and C. Armpilia, Radiation biology for medical physicists, Boca Raton, FL: CRC Press, 2017.
  • [6] M.S. Al-Buriahi, H. Arslan, and B.T. Tonguç, “Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data,” Indian J. Pure Appl, 57, 433-437, 2019.
  • [7] M. E. Phelps, E. J. Hoffman, and M. M. Ter-Pogossian, “Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV,” Radiology, 117, 573-583, 1975.
  • [8] A. Şahin and A. Bozkurt, “Monte Carlo calculation of mass attenuation coefficients of some biological compounds,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14, 408-417, 2019.
  • [9] A. Bozkurt and A. Sengul, “Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids,” Nucl. Eng. Technol. (In Press), 2021.
  • [10] E. Ermis, F. Pilicer, E. Pilicer, and C. Celiktas, “A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods,” Nucl. Sci. Tech., 27, 54, 2016.
  • [11] B.M. Ladhaf and P.P. Pawar, “Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates,” Radiat. Phys. Chem., 109, 89-94, 2015.
  • [12] P. P. Pawar and G. K. Bichile, “Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122–1.330 MeV,” Radiat. Phys. Chem., 92, 22-27, 2013.
  • [13] P. Andreo, “Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol., 36 (7), 861-920, 1991.
  • [14] C. J. Werner (editor). MCNP Users Manual - Code Version 6.2, LA-UR-17-29981, Los Alamos National Laboratory, USA, 2017.

Monte Carlo Estimation of Mass Energy Absorption Coefficients of Some Biological Compounds

Year 2021, , 416 - 423, 25.11.2021
https://doi.org/10.29233/sdufeffd.946343

Abstract

This study aims to compute total mass energy absorption coefficients of thirteen biological samples found in human body using the Monte Carlo method. The simulations were carried out using MCNP radiation transport software and utilized rectangular parallelepiped shaped absorbers upon which a point source emitted mono-energetic and parallel beam of photons. All the components in the problem geometry were surrounded by a vacuum sphere (r=100 cm) to avoid any interactions in materials other than the sample. The simulations were performed for twenty-eight photon energies in 10 keV-20 MeV energy range and µen/ρ results were compared with data from NIST compilations which indicated very good agreement. This method can be used for calculations of mass energy absorption coefficients for materials or energies where data are not available in literature.

References

  • [1] T. E. Johnson, Introduction to Health Physics, New York, NY: McGraw-Hill Education, 2017.
  • [2] J. K. Shultis and R. E. Faw, Fundamentals of Nuclear Science and Engineering, New York, NY: Marcel Dekker, 2002.
  • [3] J. H. Hubbell, “Photon mass attenuation and energy-absorption coefficients,” Int. J. Appl. Radiat. Isot., 33, 269-1290, 1982.
  • [4] M. J. Berger and J. Hubbell, XCOM: Photon cross sections on a personal computer, NBSIR-87-3597, National Bureau of Standards, Washington, DC (USA). 1987.
  • [5] C. Sureka and C. Armpilia, Radiation biology for medical physicists, Boca Raton, FL: CRC Press, 2017.
  • [6] M.S. Al-Buriahi, H. Arslan, and B.T. Tonguç, “Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data,” Indian J. Pure Appl, 57, 433-437, 2019.
  • [7] M. E. Phelps, E. J. Hoffman, and M. M. Ter-Pogossian, “Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV,” Radiology, 117, 573-583, 1975.
  • [8] A. Şahin and A. Bozkurt, “Monte Carlo calculation of mass attenuation coefficients of some biological compounds,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14, 408-417, 2019.
  • [9] A. Bozkurt and A. Sengul, “Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids,” Nucl. Eng. Technol. (In Press), 2021.
  • [10] E. Ermis, F. Pilicer, E. Pilicer, and C. Celiktas, “A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods,” Nucl. Sci. Tech., 27, 54, 2016.
  • [11] B.M. Ladhaf and P.P. Pawar, “Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates,” Radiat. Phys. Chem., 109, 89-94, 2015.
  • [12] P. P. Pawar and G. K. Bichile, “Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122–1.330 MeV,” Radiat. Phys. Chem., 92, 22-27, 2013.
  • [13] P. Andreo, “Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol., 36 (7), 861-920, 1991.
  • [14] C. J. Werner (editor). MCNP Users Manual - Code Version 6.2, LA-UR-17-29981, Los Alamos National Laboratory, USA, 2017.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Aycan Şengül 0000-0003-4548-5403

Ahmet Bozkurt 0000-0002-3163-0131

Publication Date November 25, 2021
Published in Issue Year 2021

Cite

IEEE A. Şengül and A. Bozkurt, “Bazı Biyolojik Bileşiklerin Kütlesel Enerji Soğurma Katsayılarının Monte Carlo Yöntemiyle Hesaplanması”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 416–423, 2021, doi: 10.29233/sdufeffd.946343.