Research Article
BibTex RIS Cite

Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama

Year 2011, Volume: 6 Issue: 1, 62 - 72, 16.05.2011

Abstract

Özet: Zaman serisi analizi, finansal varlıkların çözümlemesinde sıkça kullanılan istatistiksel yöntemlerden biridir. Özellikle, son yıllarda zaman serisi modellerine zaman içerisinde değişen varyans faktörünün de eklenmesi ile oluşturulan modeller üzerinde çeşitli çalışmalar yürütülmektedir. Bu alanda en çok bilinen ve kullanılan modeller varyansın deterministik bir fonksiyon olarak tanımlandığı ARCH ve GARCH modelleridir. Bu modellere seçenek olarak geliştirilen SV modelinde ise varyans, olasılıksal bir fonksiyon olarak tanımlanır. Finansal zaman serilerinde SV modelleri, ARCH modellerine göre daha esnektir. Ancak, SV modeline ilişkin olabilirlik fonksiyonu karmaşık bir yapıya sahip olduğundan parametre tahminlerinin klasik yöntemlerle elde edilmesi zordur. Bu sorun, modelin Bayesci çözümlemesinde MCMC tekniklerinin kullanılması ile ortadan kaldırılmıştır. Bu teknikler sayesinde Bayesci tahminler kolayca hesaplanabilmektedir. Çalışmada, SV modellerinin Bayesci çözümlemesi üzerinde durulacak ve Ocak 1999 / Nisan 2009 ayları arasındaki Euro/TL ve Dolar/TL döviz kuru serileri üzerinden yöntemin bir uygulaması sunulacaktır.

References

  • Özkan P., 2004. Analysis of Stochastic and Non-Stochastic Volatility Models, MSc Thesis, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, p. 78.
  • Broto C., Ruiz E., 2004. Estimation Methods for Stochastic Volatility Models: A Survey, Journal of Economic Surveys, 18 (5): 613-649.
  • Jacquier E., Polson N.G., Rossi P.E., 1994. Bayesian Analysis of Stochastic Volatility Models, Journal of Business & Econometric Statistics, 12 (4): 371-389.
  • Shephard N., 2005. Stochastic Volatility, Oxford University Press, New York, p. 525.
  • Meyer R., Yu J., 2000. BUGS for a Bayesian Analysis of Stochastic Volatility Models, The Econometrics Journal, 3 (2): 198-215.
  • Kim S., Shephard N., Chib S., 1998. Stochastic volatility: Likelihood inference and comparison with ARCH models, Review of Economic Studies, 65 (3): 361-393.
  • Gelfand A., Smith A.F.M., 1990. Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, 85 (410): 398-409.
  • Gilks W.R., Richardson S., Spiegelhalter D.J., 1996. Markov Chain Monte Carlo in Practice, Chapman and Hall, London, p. 486.
  • Walsh B., 2002. Markov Chain Monte Carlo and Gibbs Sampling, lecture notes for EEB 596z, http://nitro.biosci.arizona.edu/courses/EEB596/handouts/gibbs.pdf (Erişim Tarihi : Mart 2005)
  • Aktaş A.M., 2008. Bayesci Olasılıksal Oynaklık Modelleri, Bilim Uzmanlığı Tezi, Fen Bilimleri Enstitüsü, Hacettepe Üniversitesi, Ankara, s. 63.
  • Gamerman D., 1997. Markov Chain Monte Carlo Stochastic Simulation for Bayesian Inference, Chapman and Hall, London, p. 245.
  • Raftery A.E., Lewis S., 1995. The Number of Iterations, Convergence Diagnostics and Generic Metropolis Algorithms, pp. 115-130, In: Practical Markov Chain Monte Carlo, (Eds.: Gilks W.R., Spiegelhalter D.J. & Richardson S.), Chapman and Hall, London, p.486
  • Geweke J., 1992. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, pp. 169-193, In: Bayesian Statistics 4, (Eds.: Bernardo J.M., Berger J.O. & Smith A.F.M.), Oxford University Press, Oxford, UK, p. 859.
  • LeSage J.P., 1999. Applied Econometrics Using MATLAB, http://www.spatial-econometrics.com/html/mbook.pdf (Erişim Tarihi: Haziran 2005)
  • Yasemin Kayhan Atılgan e-posta: ykayhan@hacettepe.edu.tr
  • Süleyman Günay e-posta: sgunay@hacettepe.edu.tr

Bayesian Analysis of Stochastic Volatility Models and an Application

Year 2011, Volume: 6 Issue: 1, 62 - 72, 16.05.2011

Abstract

Abstract: Time series analysis is generally used to analyze financial
assets. Recently, researchers have been studied on time series models
with changing variance over time. Two well known models in this area are
ARCH and GARCH models where variance is defined as a deterministic
function of time. An alternative to ARCH/GARCH is SV model where
variance is determined as a stochastic function of time. The SV model
provides more flexible modelling of financial time series than
ARCH/GARCH models. Since the structure of the likelihood function of SV
model is very complicated, it is very hard to estimate the model
parameters via the classical approaches. By using Bayesian analysis and
MCMC techniques, this problem can be solved. In this study, Bayesian
analysis of SV models will be explained and an application of this
analysis to the financial time series data (Jan 1999/Apr 2009 monthly
Euro/TL and Dollar/TL exchange rates) will be exhibited.

References

  • Özkan P., 2004. Analysis of Stochastic and Non-Stochastic Volatility Models, MSc Thesis, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, p. 78.
  • Broto C., Ruiz E., 2004. Estimation Methods for Stochastic Volatility Models: A Survey, Journal of Economic Surveys, 18 (5): 613-649.
  • Jacquier E., Polson N.G., Rossi P.E., 1994. Bayesian Analysis of Stochastic Volatility Models, Journal of Business & Econometric Statistics, 12 (4): 371-389.
  • Shephard N., 2005. Stochastic Volatility, Oxford University Press, New York, p. 525.
  • Meyer R., Yu J., 2000. BUGS for a Bayesian Analysis of Stochastic Volatility Models, The Econometrics Journal, 3 (2): 198-215.
  • Kim S., Shephard N., Chib S., 1998. Stochastic volatility: Likelihood inference and comparison with ARCH models, Review of Economic Studies, 65 (3): 361-393.
  • Gelfand A., Smith A.F.M., 1990. Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, 85 (410): 398-409.
  • Gilks W.R., Richardson S., Spiegelhalter D.J., 1996. Markov Chain Monte Carlo in Practice, Chapman and Hall, London, p. 486.
  • Walsh B., 2002. Markov Chain Monte Carlo and Gibbs Sampling, lecture notes for EEB 596z, http://nitro.biosci.arizona.edu/courses/EEB596/handouts/gibbs.pdf (Erişim Tarihi : Mart 2005)
  • Aktaş A.M., 2008. Bayesci Olasılıksal Oynaklık Modelleri, Bilim Uzmanlığı Tezi, Fen Bilimleri Enstitüsü, Hacettepe Üniversitesi, Ankara, s. 63.
  • Gamerman D., 1997. Markov Chain Monte Carlo Stochastic Simulation for Bayesian Inference, Chapman and Hall, London, p. 245.
  • Raftery A.E., Lewis S., 1995. The Number of Iterations, Convergence Diagnostics and Generic Metropolis Algorithms, pp. 115-130, In: Practical Markov Chain Monte Carlo, (Eds.: Gilks W.R., Spiegelhalter D.J. & Richardson S.), Chapman and Hall, London, p.486
  • Geweke J., 1992. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, pp. 169-193, In: Bayesian Statistics 4, (Eds.: Bernardo J.M., Berger J.O. & Smith A.F.M.), Oxford University Press, Oxford, UK, p. 859.
  • LeSage J.P., 1999. Applied Econometrics Using MATLAB, http://www.spatial-econometrics.com/html/mbook.pdf (Erişim Tarihi: Haziran 2005)
  • Yasemin Kayhan Atılgan e-posta: ykayhan@hacettepe.edu.tr
  • Süleyman Günay e-posta: sgunay@hacettepe.edu.tr
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Makaleler
Authors

Derya Ersel

Yasemin Kayhan Atılgan

Süleyman Günay This is me

Publication Date May 16, 2011
Published in Issue Year 2011 Volume: 6 Issue: 1

Cite

IEEE D. Ersel, Y. Kayhan Atılgan, and S. Günay, “Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 6, no. 1, pp. 62–72, 2011.