Araştırma Makalesi
BibTex RIS Kaynak Göster

Standart ve Standart Olmayan Theta Metotlarının Bazı Uygulamaları ve Sonuçları

Yıl 2016, Cilt: 11 Sayı: 2, 109 - 120, 02.12.2016

Öz

Bu
çalışmada Adi Diferansiyel Denklemlerin nümerik çözüm metotlarından biri olan
Theta Metodu araştırıldı. Mickens’in ortaya koyduğu Standart Olmayan Sonlu Fark
Metotlarının bakış açısıyla bazı teoremler ve uygulamalar verildi. Bununla
beraber, Standart ve Standart Olmayan Thata Metotları diğer klasik metotlar ile
karşılaştırılarak güvenilirlikleri test edildi.

Kaynakça

  • Mickens, R. E., 1994. Nonstandart Finite Difference Models of Differential Equations, World Scientific Publishing Company Inc. River Edge, New Jersey.
  • Mickens, R.E., 2007. Calculation of Denominator Functions for Non-standard Finite Difference Schemes for Differential Equations Satisfying a Positivity Condition. Numerical Methods for Partial Differential Equations, 23, pp. 672-691.
  • Kama, P.,2009, Non-standard Finite Difference Methods in Dynamical Systems. University of Pretoria, Philosophie Doctor, Pretoria, p. 49.
  • Lubuma, J.M., A. Roux, 2003, An Improved Theta Method for Systems of Ordinary Differential Equations, Journal of Difference Equations and Applications, pp. 1023-1035.
  • Roux, A., 2002. Fourier Series and Spectral-Finite Difference Methods for the General Linear Diffusion Equation, 28 January 2002, Pretoria, p. 45.
  • Suli, E., 2010. Numerical Solution of Ordinary Differential Equations, 12 August 2010, pp. 21-53.
  • Farago, I., 2013. Convergence and Stability Constants of the Theta Method, Conference Applications of Mathematics, 186, pp. 42-51.
  • Arslan, D., Ongun, M. Y., Turhan, İ., 2011. Standart Olmayan Sonlu Fark Yönteminin Fuzzy Diferansiyel Denklemlere Uygulanması, III. Ulusal Konya Ereğli Kemal Akman Meslek Yüksekokulu Tebliğ Günleri, Sayı 3, No:1.
  • Ongun,M.Y., Turhan,I.,2013, A numerical comparison for a discrete HIV infection of $CD4^{+}T$-cells model derived from non-standard numerical scheme, Journal of Applied Mathematics, Special Issue:Iterative Methods for Nonlinear Equations or Systems and Their Applications (IMNES), Vol.2013, Article ID 375094, 9 pages doi:10.1155/2012/375094
  • Ongun,M.Y.,Arslan,D.,Garrappa,R., 2013,Non-standard Finite Difference Schemes for fractional order Brusselator system, Advances in Difference Equations,doi:10.1186/1687-1847-2013-102.
  • Barclay G. J., Griffiths D. F., Higham D.J., 2000, Theta Method Dynamics, LMS J. Comput. Math. 3, pp. 27–43.

Some Results and Applications of Standard and Non-standard Theta Methods

Yıl 2016, Cilt: 11 Sayı: 2, 109 - 120, 02.12.2016

Öz

In this paper, The Theta Method which is one way of
the numerical solution method of ordinary differential equations was investigated.
Some theorems and applications were given from the point of non-standard finite
difference methods discovered by Mickens. Moreover, the performance of  the Standard and Non-standard Theta method was
tested by comparing with other classical numerical methods.

Kaynakça

  • Mickens, R. E., 1994. Nonstandart Finite Difference Models of Differential Equations, World Scientific Publishing Company Inc. River Edge, New Jersey.
  • Mickens, R.E., 2007. Calculation of Denominator Functions for Non-standard Finite Difference Schemes for Differential Equations Satisfying a Positivity Condition. Numerical Methods for Partial Differential Equations, 23, pp. 672-691.
  • Kama, P.,2009, Non-standard Finite Difference Methods in Dynamical Systems. University of Pretoria, Philosophie Doctor, Pretoria, p. 49.
  • Lubuma, J.M., A. Roux, 2003, An Improved Theta Method for Systems of Ordinary Differential Equations, Journal of Difference Equations and Applications, pp. 1023-1035.
  • Roux, A., 2002. Fourier Series and Spectral-Finite Difference Methods for the General Linear Diffusion Equation, 28 January 2002, Pretoria, p. 45.
  • Suli, E., 2010. Numerical Solution of Ordinary Differential Equations, 12 August 2010, pp. 21-53.
  • Farago, I., 2013. Convergence and Stability Constants of the Theta Method, Conference Applications of Mathematics, 186, pp. 42-51.
  • Arslan, D., Ongun, M. Y., Turhan, İ., 2011. Standart Olmayan Sonlu Fark Yönteminin Fuzzy Diferansiyel Denklemlere Uygulanması, III. Ulusal Konya Ereğli Kemal Akman Meslek Yüksekokulu Tebliğ Günleri, Sayı 3, No:1.
  • Ongun,M.Y., Turhan,I.,2013, A numerical comparison for a discrete HIV infection of $CD4^{+}T$-cells model derived from non-standard numerical scheme, Journal of Applied Mathematics, Special Issue:Iterative Methods for Nonlinear Equations or Systems and Their Applications (IMNES), Vol.2013, Article ID 375094, 9 pages doi:10.1155/2012/375094
  • Ongun,M.Y.,Arslan,D.,Garrappa,R., 2013,Non-standard Finite Difference Schemes for fractional order Brusselator system, Advances in Difference Equations,doi:10.1186/1687-1847-2013-102.
  • Barclay G. J., Griffiths D. F., Higham D.J., 2000, Theta Method Dynamics, LMS J. Comput. Math. 3, pp. 27–43.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Makaleler
Yazarlar

Fatih Er Bu kişi benim

Mevlüde Yakıt Ongun

Yayımlanma Tarihi 2 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 11 Sayı: 2

Kaynak Göster

IEEE F. Er ve M. Yakıt Ongun, “Standart ve Standart Olmayan Theta Metotlarının Bazı Uygulamaları ve Sonuçları”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 11, sy. 2, ss. 109–120, 2016.