Yıl 2019, Cilt 14 , Sayı 1, Sayfalar 127 - 135 2019-05-31

Magnetic Properties of Spin-1 One-Dimensional Ising System
Spin-1 Tek Boyutlu Ising Sisteminin Manyetik Özellikleri

Gökçen DİKİCİ YILDIZ [1]


In this work, we investigated the temperature and applied field dependence of the magnetization and quadrupolar moment of the spin-1 one-dimensional Ising system (S1-1DIS) by using Kaneyoshi approach throughout the Effective Field Theory (EFT). We determined that the S1-1DIS has a first or second order phase transition according to the crystal field, the magnetization of the S1-1DIS has a second-order phase transition for D=0 whereas the quadrupolar moment has no phase transition at Tc. The magnetization of the S1-1DIS has a first-order phase transition for D=-2.6 at Tf but the quadrupolar moment has phase transition at Tf and it increases at T>Tf, paramagnetic magnetic susceptibility decreases monotonically at T>Tc whereas it has a broad maximum at T>Tf. Because of the MT=0.0 at T>Tc and Tf, it can be concluded that susceptibility behaviors in the paramagnetic region result from the quadrupolar moment. On the other hand, the slope of the hysteresis curves of the MT decreases as the temperature increases and they become zero at high temperature. The theoretical first-order phase transition result of the S1-1DIS is the confirmation of the result of KH2PO4 (KPD) firstly reported by Kittel that one-dimensional system of the KPD undergoes a first-order phase transition at T≠0.

Bu çalışmada, etkin alan teorisinde Kaneyoshi yaklaşımı kullanarak tek boyutlu Ising sisteminin (S1-1DIS) spin-1’in sıcaklık ve dış manyetik alana bağlı mıknatıslanma ve kuadrapol momenti araştırıldı. S1-1DIS'in kristal alanına göre birinci veya ikinci dereceden bir faz geçişine sahip olduğu; S1-1DIS'in mıknatıslanmasının D = 0 için ikinci dereceden bir faz geçişine sahip olduğu; ancak kuadrupolar momentin Tc'de faz geçişine sahip olmadığı belirlendi. S1-1DIS’ in mıknatıslanması, Tf’ de D = -2.6 için birinci dereceden bir faz geçişine sahiptir, ancak kuadrupolar moment Tf ve T>Tf’ de artarken faz geçişine sahiptir; paramanyetik manyetik alınganlık, T> Tc'de monotonik olarak azalır, oysa T> Tf’ de geniş bir maksimuma sahiptir. T>Tc ve Tf’deki MT = 0.0 nedeniyle, paramanyetik bölgedeki alınganlık davranışlarının kuadrupolar momentten kaynaklandığı sonucuna varılabilir. Diğer taraftan, MT’ nin histerezis eğrilerinin eğimi, sıcaklık arttıkça azalır ve yüksek sıcaklıkta sıfır olur. S1-1DIS’in birinci dereceden faz geçişinin teorik sonucu, ilk olarak Kittel tarafından bildirilen KH2PO4’ün (KPD) bir boyutlu sisteminin T≠0 da birinci dereceden bir faz geçişine uğradığı sonucunun teyididir.

  • T. Kaneyoshi, “Differential operator technique in the Ising spin systems,” Acta Phys. Pol., A 83, 703-738, 1993.
  • T. Kaneyoshi, “Magnetizations of a nanoparticle described by the transverse Ising model,” J. Magn. Magn. Mater., 321, 3430-3435, 2009.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces,” J. Magn. Magn. Mater.,321, 3630-3636, 2009.
  • T. Kaneyoshi, “Magnetizations of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3410-3415, 2010.
  • T. Kaneyoshi, “Phase diagrams of a transverse Ising nanowire,” J. Magn. Magn. Mater., 322, 3014-3018, 2010.
  • T. Kaneyoshi, “Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube),” J. Magn. Magn. Mater., 323, 2483-2486, 2011.
  • T. Kaneyoshi, “Some characteristic properties of initial susceptibility in a Ising nanotube,” J. Magn. Magn. Mater., 323, 1145-1151,2011.
  • T. Kaneyoshi, “Ferrimagnetism in a ultra-thin decorated Ising film,” J. Magn. Magn. Mater.,336, 8-13, 2013.
  • T. Kaneyoshi, “Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface,” J. Magn. Magn. Mater., 339, 151-156, 2013.
  • T. Kaneyoshi, “Ferrimagnetic magnetizations in a thin film described by the transverse Ising model,” Phys. Status Solidi (b), 246, 2359-2365, 2009.
  • T. Kaneyoshi, “Magnetic properties of a cylindrical Ising nanowire (or nanotube),” Phys. Status Solidi (b), 248, 250-258, 2011.
  • T. Kaneyoshi, “Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube; Effects of surface dilution,” Solid State Commun., 151, 1528-1532,2011.
  • T. Kaneyoshi, “The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling,” Solid State Commun.,152, 883-886, 2012.
  • T. Kaneyoshi, “Ferrimagnetism in a decorated Ising nanowire,” Phys. Lett. A, 376, 2352-2356, 2012.
  • T. Kaneyoshi, “The effects of surface dilution on magnetic properties in a transverse Ising nanowire,” Physica A, 391, 3616-3628, 2012.
  • T. Kaneyoshi, “Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface,” Physica A, 392, 2406-2414, 2013.
  • T. Kaneyoshi, “Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces,” Physica B, 407, 4358-4364, 2012.
  • T. Kaneyoshi, “Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces,” Physica B, 414, 72-77, 2013.
  • T. Kaneyoshi, “Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces,” Physica B, 436, 208-214, 2014.
  • T. Kaneyoshi, “Unconventional magnetic properties in transverse Ising nanoislands: Effects of interlayer coupling,” Physica E, 65, 100-105, 2015.
  • W. Jiang, X. X. Li, L. M. Liu, J. N. Chen and F. Zhang, “Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field,” J. Magn. Magn. Mater., 353, 90-98, 2014.
  • W. Jiang, X. X. Li and L. M. Liu, “Surface effects on a multilayer and multisublattice cubic nanowire with core/shell,” Physica E, 53, 29-35, 2013.
  • M. Ertaş and Y. Kocakaplan, “Dynamic behaviors of the hexagonal Ising nanowire,” Phys. Lett. A, 378, 845-850, 2014.
  • Y. Kocakaplan, E. Kantar and M. Keskin, “Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique,” Eur. Phys. J. B., 86, 420, 2013.
  • S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, R. Ahuja and F. Dujardin, “Phase diagrams of diluted transverse Ising nanowire,” J. Magn. Magn. Mater., 336, 75-82, 2013.
  • A. Zaim, M. Kerouad and M. Boughrara, “Effects of the random field on the magnetic behavior of nanowires with core/shell morphology,” J. Magn. Magn. Mater., 331, 37-44, 2013.
  • N. Şarlı and M. Keskin, “Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire,” Solid State Commun., 152, 354-359, 2012.
  • M. Keskin, N. Şarlı and B. Deviren, “Hysteresis behaviors in a cylindrical Ising nanowire,” Solid State Commun., 151, 1025-1030, 2011.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire,” Phys. Status Solidi (b,) 250, 196-206, 2013.
  • Y. Yüksel, Ü. Akıncı and H. Polat, “Investigation of critical phenomena and magnetism in amorphous Ising nanowire in the presence of transverse fields,” Physica A, 392, 2347-2358, 2013.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions,” J. Magn. Magn. Mater., 324, 4237-4244, 2012.
  • Ü. Akıncı, “Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: Discrete distributions,” J. Magn. Magn. Mater., 324, 3951-3960, 2012.
  • E. Kantar and Y. Kocakaplan, “Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors,” Solid State Commun., 177, 1-6, 2014.
  • E. Kantar and M. Keskin, “Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach,” J. Magn. Magn. Mater.,349, 165-172, 2014.
  • E. Kantar, B. Deviren and M. Keskin, “Magnetic properties of mixed Ising nanoparticles with core-shell structure,” Eur. Phys. J. B, 86, 253, 2013.
  • H. Magoussi, A. Zaim and M. Kerouad, “Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube,” Chinese Phys. B, 22, 116401, 2013.
  • N. Şarlı, “Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube,” Physica B, 411, 12-25, 2013.
  • C. D. Wang and R. G. Ma, “Force induced phase transition of honeycomb-structured ferroelectric thin film,” Physica A, 392, 3570-3577, 2013.
  • N. Şarlı, “Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices,” J. Magn. Magn. Mater., 374, 238-244, 2015.
  • N. Şarlı, S. Akbudak and M. R. Ellialtıoğlu, “The peak effect (PE) region of the antiferromagnetic two-layer Ising nanographene,” Physica B, 452, 18-22, 2014.
  • N. Şarlı, “The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system,” Physica E, 63, 324-328, 2014.
  • N. Bhattacharya and A. R. Chowdhury, “Statistical mechanics of a one-dimensional ferromagnetic chain with an impurity under an external field,” Phys. Rev. B, 49, 647, 1994.
  • M. E. Zhitomirsky and A. Honecker, “Magnetocaloric effect in one-dimensional antiferromagnets,” J. Stat. Mech., P07012, 2004.
  • G. Ismail and S. Hassan, “Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields,” Chinese Phys., 11, 948-954, 2002.
  • M. G. Pini and A. Rettori, “Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models,” Phys. Rev. B, 76, 064407, 2007.
  • S. Ares, J. A. Cuesta, A. Sanchez, and R. Toral, “Apparent phase transitions in finite one-dimensional sine-Gordon lattices”Phys. Rev. E, 67, 046108, 2003.
  • S. T. Chui, and J. D. Weeks, “Pinning and roughening of one-dimensional models of interfaces and steps,” Phys. Rev. B, 23, 2438-2445, 1981.
  • T. W. Burkhardt, “Localisation-delocalisation transition in a solid-on-solid model with a pinning potential,” J. Phys. A: Math. and Gen., 14, L63-L68, 1981.
  • T. Dauxois, and M. Peyrard, “Entropy-driven transition in a one-dimensional system,” Phys. Rev. E, 51, 4027-4040, 1995.
  • T. Dauxois, N. Theodorakopoulos, and M. Peyrard, “Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons,” J. Stat. Phys.,107 (3-4), 869-891, 2002.
  • L. van Hove, “Sur l’integrale de configuration pour les systemes de particules a une dimension,” Physica, 16, 137-143, 1950.
  • E. H. Lieb, and D. C. Mattis, Mathematical Physics in One Dimension. Londan: Academic Press, 1966, pp. 25-108.
  • D. Ruelle, Statistical Mechanics: Rigorous Results. Londan: Imperial College Press, 1989, pp. 108-143.
  • F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Comm. Math. Phys.,12 (2), 91-107, 1969.
  • L. D. Landau, and E. M. Lifshitz, Statistical Physics, Part 1. New York: Pergamon, 1980, pp. 171-179.
  • C. Kittel, “Phase Transition of a Molecular Zipper,” Am. J. Phys., 37, 917-920, 1969.
  • T. Kaneyoshi, “Spin-glass ordering temperature beyond its mean-field value,” Phys. Rev. B, 24, 2693-2701, 1981.
  • M. Bałanda, “AC Susceptibility Studies of Phase Transitions and Magnetic Relaxation: Conventional, Molecular and Low-Dimensional Magnets,” Acta Phys. Pol. A, 124, 964-976, 2013.
  • M. Bałanda, Z. Tomkowicz, W. Haase, and M. Rams, “Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds,” J. Phys.: Conf. Ser., 303 (1), 012036, 2011.
  • A. Panja, N. Shaikh, P. Vojtisek, S. Gao, and P. Banerjee, “Synthesis, crystal structures and magnetic properties of 1D polymeric [MnIII(salen)N3] and [MnIII(salen)Ag(CN)2] complexes,” New J. Chem., 26, 1025-1028, 2002.
Birincil Dil en
Konular Fizik, Uygulamalı
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-5751-0795
Yazar: Gökçen DİKİCİ YILDIZ (Sorumlu Yazar)
Kurum: KIRIKKALE ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, FİZİK BÖLÜMÜ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Mayıs 2019

Bibtex @araştırma makalesi { sdufeffd556686, journal = {Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi}, issn = {}, eissn = {1306-7575}, address = {}, publisher = {Süleyman Demirel Üniversitesi}, year = {2019}, volume = {14}, pages = {127 - 135}, doi = {10.29233/sdufeffd.556686}, title = {Magnetic Properties of Spin-1 One-Dimensional Ising System}, key = {cite}, author = {DİKİCİ YILDIZ, Gökçen} }
APA DİKİCİ YILDIZ, G . (2019). Magnetic Properties of Spin-1 One-Dimensional Ising System. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi , 14 (1) , 127-135 . DOI: 10.29233/sdufeffd.556686
MLA DİKİCİ YILDIZ, G . "Magnetic Properties of Spin-1 One-Dimensional Ising System". Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 14 (2019 ): 127-135 <https://dergipark.org.tr/tr/pub/sdufeffd/issue/45380/556686>
Chicago DİKİCİ YILDIZ, G . "Magnetic Properties of Spin-1 One-Dimensional Ising System". Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 14 (2019 ): 127-135
RIS TY - JOUR T1 - Magnetic Properties of Spin-1 One-Dimensional Ising System AU - Gökçen DİKİCİ YILDIZ Y1 - 2019 PY - 2019 N1 - doi: 10.29233/sdufeffd.556686 DO - 10.29233/sdufeffd.556686 T2 - Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi JF - Journal JO - JOR SP - 127 EP - 135 VL - 14 IS - 1 SN - -1306-7575 M3 - doi: 10.29233/sdufeffd.556686 UR - https://doi.org/10.29233/sdufeffd.556686 Y2 - 2019 ER -
EndNote %0 Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi Magnetic Properties of Spin-1 One-Dimensional Ising System %A Gökçen DİKİCİ YILDIZ %T Magnetic Properties of Spin-1 One-Dimensional Ising System %D 2019 %J Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi %P -1306-7575 %V 14 %N 1 %R doi: 10.29233/sdufeffd.556686 %U 10.29233/sdufeffd.556686
ISNAD DİKİCİ YILDIZ, Gökçen . "Magnetic Properties of Spin-1 One-Dimensional Ising System". Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 14 / 1 (Mayıs 2019): 127-135 . https://doi.org/10.29233/sdufeffd.556686
AMA DİKİCİ YILDIZ G . Magnetic Properties of Spin-1 One-Dimensional Ising System. SDÜFEFFD. 2019; 14(1): 127-135.
Vancouver DİKİCİ YILDIZ G . Magnetic Properties of Spin-1 One-Dimensional Ising System. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi. 2019; 14(1): 135-127.