Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Chemical Disposal Methods for Classic Explosives Containing Nitro Groups Via Reductive Reactions

Yıl 2020, Cilt: 15 Sayı: 1, 45 - 62, 31.05.2020
https://doi.org/10.29233/sdufeffd.612469

Öz

The greater part of the ammunition used for military purposes today is produced from energetic substances containing nitro groups. The fact that a nitro group is a functional group that is affected by heat, light, and microorganisms causes the ammunition to have a lifetime, in parallel the problem of disposal of expired ammunition. Disposal methods used today are based on the explosion or combustion of the energetic material. Although these methods are carried out in precautionary environments, they involve risks in terms of occupational safety and environmental pollution. In this work, the energetic substances used in the ammunition 2,4,6-trinitrotoluene, 2,4,6-trinitrophenol and 1,3,5-cyclotrimethylenetrinitramine compounds using the usual reduction reactions are planned to convert to nonhazardous materials. The stated energetic materials were reduced using iron, metallic zinc, sodium dithionite, Pd-activated charcoal/hydrazine and sodium-mercury amalgam in MeOH:H2O. The reduction products were characterized by IR spectroscopy and it was found that the nitro groups in the reduction products were reduced almost exclusively to amino groups. When the reduction products were examined by the thermogravimetry method, it was observed that the explosion hazards of energetic substances reduced with Fe / HCl and sodium-mercury amalgam were eliminated.

Kaynakça

  • [1] T. M. Klapötke,” Chemistry of High Energy Materials,” Munich: Walter de Gruyter, 2017, pp. 11.
  • [2] P. Politzer and J. S. Murray, “Energetic Materials, Part 2, Detonation, Combustion,” New Orleans: Elsevier, 2003, pp. 25-46.
  • [3] R. W. Shaw, T. B. Brill and D. L. Thomson, “Overviews of Recent Research on Energetic Materials,” Singapore: Word Scientific Publishers Co Pte. Ltd., 2005, pp. 473.
  • [4] J. Akhavan, “The Chemistry of Explosives,” London: RSC Paperbacks, 1998, pp. 7-14.
  • [5] J. P. Agrawal, “High Energetic Materials,” Weinheim: Wiley VCH Verlag GmbH, 2010, pp. 1-32.
  • [6] N. Kubota, “Propellants and Explosives,” Weinheim: Wiley VCH Verlag GmbH, 2007, pp. 23-39.
  • [7] Bozkuş Sinecan İrem, Şen Nilgün (2019). 2,4,6-Trinitrofenol ve Trinitrotoluen ile 1-Bromopiren Arasında Oluşan Yeni Enerjik Ko-kristalin Karakterizasyonu ve Enerjik Performans Özellikleri. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14, 136-149.
  • [8] Bozkuş Sinecan İrem, Hope Karl S, Yüksel Bayram, Atçeken Nurunnisa, Nazir Hasan, Atakol Orhan, Şen Nilgün (2019). Characterization and properties of a novel energetic Co-crystal formed between 2,4,6-Trinitrophenol and 9-Bromoanthracene. J. Mol. Struct., 1192, 145-153.
  • [9] M. Qasim, Y. Kholod, L. Gorb, D. Magers, P. Honea and J. Leszczynski, “Application of quantum-chemical approximations to environmental problem”, Chemosphere, 69, 1144-1150, 2007.
  • [10] T. Brink, “Introduction to Green Energetic Materials,” West Sussex: John Wiley &Sons, 2014, pp. 2-11.
  • [11] E. Breitmaier and G. Jung, “Organische Chemie,” 6. Überarbeitete Auflage: Thimie Georg Verlag, Tubingen, 2009, pp. 476.
  • [12] N. Ono, “The Nitro Group in Organic Synthesis,” New York: Wiley&VCH, 2001, pp. 370-378.
  • [13] G. Bunte, H. H. Krause, T. Hirth, “Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques,” Propellants, Explosives, Pyrotechnics 22, 259-269, 1997.
  • [14] H. M. Heilmann, U. Wiesmann, M. K. Stenstrom, “Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon,” Environ. Sci. Technol. 30, 1485-1492, 1996.
  • [15] B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatschell, “Vogel’s Textbook of Practical Organic Chemistry,” London: Longman Scientific&Technical, fifth edition, 1989, pp. 976.
  • [16] J. B. Ledgard, “The Preparatory Manual of Explosives,” 3th Edition, Seattle: Independently Published, 2007, pp. 116-117.
  • [17] J. B. Ledgard, “The Preparatory Manual of Explosives,” 3th Edition, Seattle Independently Published, 2007, pp. 180.
  • [18] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, and A. R. Tatschell, “Vogel’s Textbook of Practical Organic Chemistry,” London: Longmann Scientific&Technical, fifth edition, 1989, pp. 464.
  • [19] E. Breitmaier, ‎G. Jung, “Organische Chemie,” 6. Überarbeitet Auflage, Tubingen: Thimie, 2009, pp. 375-377.
  • [20] N. Ono, “The Nitro Group in Organic Synthesis” New York: Wiley&VCH, 2001, pp.170-180.
  • [21] J. E. House, “Inorganic Chemistry” Academic Press, Elsevier, 2008, pp. 540-541.
  • [22] K. H. Büchel, H. H. Moretto, P. Woditsch, “Industrial Inorganic Chemistry”, 2nd Edition, New York: Wiley&VCH, 2000, pp. 121-122.
  • [23] A. S. Bailey, J. R. Case, “4, 6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: a new series of complex-forming reagents for aromatic hydrocarbons,” Tetrahedron, 3, 113-131, 1958.
  • [24] G. O. Reddy, B. K. M. Murali and A. K. Chotterjee, “Thermal study on picryl azide (2-azido-1,3,5-trinitrobenzene) decomposition using simultaneous thermogravimetry and differential scanning calorimetry,” Propellants, Explosives, Pyrotechnics, 8, 29-33, 1983.
  • [25] A. B. Shremetev, N. S. Aleksandrova, N. V. Ignat’ev and M. Schulte, “Straightforward one-pot synthesis of benzofuroxans from o-halonitrobenzenes in ionic liquids,” Mendeleev Commun., 22, 2, 95-97, 2012.
  • [26] E. Özkaramete, N. K. Şenocak, E. K. İnal, S. Öz, I. Svoboda and O. Atakol, “Experimental and computational studies on the thermal degradation of nitroazidobenzenes,” Propellants, Explosives, Pyrotechnics, 38, 113-119, 2013.
  • [27] D. Sarkar, A. Som, T. Pradeep, “Catalytic paper spray ionization mass spectrometry with metal nanotubes and the detection of 2,4,6-trinitrotoluene,” Anal. Chem., 89, 11378-11382, 2017.
  • [28] A. Gupta and M. A. Widdowson, “Modeling of complex reductive biodegradation kinetics of recalcitrant organic contaminants,” J. Environ. Eng., 143, 04017033/1-04017033/9, 2017.
  • [29] X. Ni, Y. Zhao and Q. Song, “Electrochemical reduction and in-situ electrochemiluminescence detection of nitroaromatic compounds,” Electrochim., Acta, 164, 31-37, 2015.
  • [30] C. K. Chua, M. Pumera and L. Rulisek, “Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study,” J. Physical Chem. 116, 4243-4251, 2012.
  • [31] V.A.Kashaev, G. Khisamutdinov, S.A. Shevelev, S. I. Valeshnii, A. Shakhnes and A.P. Bavrina, “Preparation of 2,4,6-triaminotoluene and its salts with inorganic acids from 2,4,6-trinitrotoluene,” Theor. Found. Chem. Eng., 42, 650-656, 2008.
  • [32] G. Anu, S. Dhanashree and M. Sukhendu, “Catalytic Reduction of Toxic Nitroarenes in Aqueous Medium Using Worm-Like Rhodium Nanoparticles”, Chem. Select., 2, 9718-9721, 2017.

Nitro Grupları İçeren Klasik Patlayıcı Maddelerin İndirgeme Tepkimeleri ile Kimyasal Bertaraf Yöntemlerinin Araştırılması

Yıl 2020, Cilt: 15 Sayı: 1, 45 - 62, 31.05.2020
https://doi.org/10.29233/sdufeffd.612469

Öz

Askeri amaçlı olarak kullanılan mühimmatın çok büyük bir kısmı nitro grubu içeren enerjik maddelerden üretilmektedir. Nitro grubunun ısı, ışık ve mikroorganizmalardan etkilenen bir fonksiyonlu grup olması mühimmatların bir raf ömrü olmasına ve ömrünü tamamlamış mühimmatın bertaraf edilmesi problemini ortaya çıkarmaktadır. Günümüzde başvurulan bertaraf yöntemleri enerjik maddenin patlatılması veya yakılması esasına dayanır. Bu yöntemler tedbir alınmış ortamlarda gerçekleştirilmekle birlikte iş güvenliği ve çevre kirliliği açısından risk içerirler. Bu çalışma mühimmat içinde kullanılan enerjik maddelerden 2,4,6-trinitrotoluen, 2,4,6-trinitrofenol ve 1,3,5-siklotrimetilentrinitramin bileşiklerinin indirgenme tepkimeleri kullanılarak tehlikesiz materyal haline getirilmeleri üzerine planlanmıştır. Belirtilen enerjik maddeler metalik demir, metalik çinko, sodyumditiyonit, Pd-aktif kömür/hidrazin ve sodyum-cıva amalgamı kullanılarak MeOH:H2O içinde indirgenmişlerdir. İndirgenme ürünleri IR spektroskopi yöntemi ile incelendiğinde, indirgenme ürünleri nitro gruplarının hemen hemen tamamen amino gruplarına indirgendiği tespit edilmiştir. Termogravimetri yöntemi ile indirgenme ürünleri incelendiğinde Fe/HCl ve sodyum-civa amalgamı ile indirgenmiş enerjik maddelerin patlama tehlikelerinin ortadan kalktığı görülmüştür.

Kaynakça

  • [1] T. M. Klapötke,” Chemistry of High Energy Materials,” Munich: Walter de Gruyter, 2017, pp. 11.
  • [2] P. Politzer and J. S. Murray, “Energetic Materials, Part 2, Detonation, Combustion,” New Orleans: Elsevier, 2003, pp. 25-46.
  • [3] R. W. Shaw, T. B. Brill and D. L. Thomson, “Overviews of Recent Research on Energetic Materials,” Singapore: Word Scientific Publishers Co Pte. Ltd., 2005, pp. 473.
  • [4] J. Akhavan, “The Chemistry of Explosives,” London: RSC Paperbacks, 1998, pp. 7-14.
  • [5] J. P. Agrawal, “High Energetic Materials,” Weinheim: Wiley VCH Verlag GmbH, 2010, pp. 1-32.
  • [6] N. Kubota, “Propellants and Explosives,” Weinheim: Wiley VCH Verlag GmbH, 2007, pp. 23-39.
  • [7] Bozkuş Sinecan İrem, Şen Nilgün (2019). 2,4,6-Trinitrofenol ve Trinitrotoluen ile 1-Bromopiren Arasında Oluşan Yeni Enerjik Ko-kristalin Karakterizasyonu ve Enerjik Performans Özellikleri. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14, 136-149.
  • [8] Bozkuş Sinecan İrem, Hope Karl S, Yüksel Bayram, Atçeken Nurunnisa, Nazir Hasan, Atakol Orhan, Şen Nilgün (2019). Characterization and properties of a novel energetic Co-crystal formed between 2,4,6-Trinitrophenol and 9-Bromoanthracene. J. Mol. Struct., 1192, 145-153.
  • [9] M. Qasim, Y. Kholod, L. Gorb, D. Magers, P. Honea and J. Leszczynski, “Application of quantum-chemical approximations to environmental problem”, Chemosphere, 69, 1144-1150, 2007.
  • [10] T. Brink, “Introduction to Green Energetic Materials,” West Sussex: John Wiley &Sons, 2014, pp. 2-11.
  • [11] E. Breitmaier and G. Jung, “Organische Chemie,” 6. Überarbeitete Auflage: Thimie Georg Verlag, Tubingen, 2009, pp. 476.
  • [12] N. Ono, “The Nitro Group in Organic Synthesis,” New York: Wiley&VCH, 2001, pp. 370-378.
  • [13] G. Bunte, H. H. Krause, T. Hirth, “Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques,” Propellants, Explosives, Pyrotechnics 22, 259-269, 1997.
  • [14] H. M. Heilmann, U. Wiesmann, M. K. Stenstrom, “Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon,” Environ. Sci. Technol. 30, 1485-1492, 1996.
  • [15] B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatschell, “Vogel’s Textbook of Practical Organic Chemistry,” London: Longman Scientific&Technical, fifth edition, 1989, pp. 976.
  • [16] J. B. Ledgard, “The Preparatory Manual of Explosives,” 3th Edition, Seattle: Independently Published, 2007, pp. 116-117.
  • [17] J. B. Ledgard, “The Preparatory Manual of Explosives,” 3th Edition, Seattle Independently Published, 2007, pp. 180.
  • [18] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, and A. R. Tatschell, “Vogel’s Textbook of Practical Organic Chemistry,” London: Longmann Scientific&Technical, fifth edition, 1989, pp. 464.
  • [19] E. Breitmaier, ‎G. Jung, “Organische Chemie,” 6. Überarbeitet Auflage, Tubingen: Thimie, 2009, pp. 375-377.
  • [20] N. Ono, “The Nitro Group in Organic Synthesis” New York: Wiley&VCH, 2001, pp.170-180.
  • [21] J. E. House, “Inorganic Chemistry” Academic Press, Elsevier, 2008, pp. 540-541.
  • [22] K. H. Büchel, H. H. Moretto, P. Woditsch, “Industrial Inorganic Chemistry”, 2nd Edition, New York: Wiley&VCH, 2000, pp. 121-122.
  • [23] A. S. Bailey, J. R. Case, “4, 6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: a new series of complex-forming reagents for aromatic hydrocarbons,” Tetrahedron, 3, 113-131, 1958.
  • [24] G. O. Reddy, B. K. M. Murali and A. K. Chotterjee, “Thermal study on picryl azide (2-azido-1,3,5-trinitrobenzene) decomposition using simultaneous thermogravimetry and differential scanning calorimetry,” Propellants, Explosives, Pyrotechnics, 8, 29-33, 1983.
  • [25] A. B. Shremetev, N. S. Aleksandrova, N. V. Ignat’ev and M. Schulte, “Straightforward one-pot synthesis of benzofuroxans from o-halonitrobenzenes in ionic liquids,” Mendeleev Commun., 22, 2, 95-97, 2012.
  • [26] E. Özkaramete, N. K. Şenocak, E. K. İnal, S. Öz, I. Svoboda and O. Atakol, “Experimental and computational studies on the thermal degradation of nitroazidobenzenes,” Propellants, Explosives, Pyrotechnics, 38, 113-119, 2013.
  • [27] D. Sarkar, A. Som, T. Pradeep, “Catalytic paper spray ionization mass spectrometry with metal nanotubes and the detection of 2,4,6-trinitrotoluene,” Anal. Chem., 89, 11378-11382, 2017.
  • [28] A. Gupta and M. A. Widdowson, “Modeling of complex reductive biodegradation kinetics of recalcitrant organic contaminants,” J. Environ. Eng., 143, 04017033/1-04017033/9, 2017.
  • [29] X. Ni, Y. Zhao and Q. Song, “Electrochemical reduction and in-situ electrochemiluminescence detection of nitroaromatic compounds,” Electrochim., Acta, 164, 31-37, 2015.
  • [30] C. K. Chua, M. Pumera and L. Rulisek, “Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study,” J. Physical Chem. 116, 4243-4251, 2012.
  • [31] V.A.Kashaev, G. Khisamutdinov, S.A. Shevelev, S. I. Valeshnii, A. Shakhnes and A.P. Bavrina, “Preparation of 2,4,6-triaminotoluene and its salts with inorganic acids from 2,4,6-trinitrotoluene,” Theor. Found. Chem. Eng., 42, 650-656, 2008.
  • [32] G. Anu, S. Dhanashree and M. Sukhendu, “Catalytic Reduction of Toxic Nitroarenes in Aqueous Medium Using Worm-Like Rhodium Nanoparticles”, Chem. Select., 2, 9718-9721, 2017.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Abdullah YÜCEL 0000-0003-2143-9250

Orhan ATAKOL 0000-0003-0977-6588

Yayımlanma Tarihi 31 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 15 Sayı: 1

Kaynak Göster

IEEE A. YÜCEL ve O. ATAKOL, “Nitro Grupları İçeren Klasik Patlayıcı Maddelerin İndirgeme Tepkimeleri ile Kimyasal Bertaraf Yöntemlerinin Araştırılması”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 15, sy. 1, ss. 45–62, 2020, doi: 10.29233/sdufeffd.612469.