Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Functionalized Titanium Dioxide Nanotube

Yıl 2020, Cilt: 15 Sayı: 1, 167 - 176, 31.05.2020
https://doi.org/10.29233/sdufeffd.666020

Öz

Several studies releated on TiO2 nanotubes synthesis show that nanotubes do not occur under the specified conditions, while the characterization results belong to the powder form of the nanomaterials. In this study, titanium dioxide (TiO2) nanotubes were synthesized via hydrothermal process fromcommercial TiO2 powder. After optimizing the experimental conditions for nanotube synthesis, the obtained TiO2 nanotubes were functionalized with methacrylic acid. The structure of TiO2 powder, hydrothermal conditions (temperature, concentration of reagents and hydrothermal time) and subsequent washing processes were observed to play an important role in determining the TiO2 nanotube structure (crystallography and morphology) and physical-chemical properties. The morphology of the nanotubes were characterized by Energy Dispersion Spectrometry (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

Kaynakça

  • [1] M. Naquib, Y. Gogotsi, “Synthesis of two-dimensional materials by selective extraction,” Acc. Chem. Res., 48(4), 128-135, 2014.
  • [2] T. Öztürk, “Production and characterization of TiO2 nanotubes on CP titanium surface,” M.S. thesis, Dept. Mater. Eng., Istanbul Univ., Istanbul, Turkey, 2012.
  • [3] K. Jukk, N. Kongi, “Electrochemical oxygen reduction behaviour of platinum nanoparticles supported on multi-walled carbon nanotube/titanium dioxide composites,” J. Electroanal. Chem., 735, 68-76, 2014.
  • [4] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. Appl. Phys., 44(12), 8269-8285, 2005.
  • [5] A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and select result,” Chem. Rev., 95(3), 735-758, 1995.
  • [6] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., 11(1-2), 3-18, 2007.
  • [7] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., 48(5-8), 53-229, 2003.
  • [8] A. Hagfeldt, M. Graetzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., 95(1), 49-68, 1995.
  • [9] A. Mills, S. Le Hunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol. A Chem., 108(1), 1-35, 1997.
  • [10] S. Eustis, M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., 35(3), 209-217, 2006.
  • [11] N.M Mohsen, R.G. Craig, “Effect of silanation of fillers on their dispersability by monomersystems,” Jour. of Oral Rehabil., 22(3),183-89, 1995.
  • [12] X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications,” Chem. Rev., 107(7), 2891-2959, 2007.
  • [13] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials synthesis properties and applications,” Adv. Mater., 18(21), 2807-2824, 2006.
  • [14] A. Ghicov, P. Schmuki, “Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures,” Chem. Commun., 28(20), 2791-2808, 2009.
  • [15] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, “Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates,” Adv. Mater., 16(22), 2052-2057, 2004.
  • [16] D. Zhang, L. Qi, J. Ma, and H. Cheng, “Formation on crystalline nanosized titania in reverse micelles at room temperature,” J. Mater. Chem., 12(12), 3677-3680, 2002.
  • [17] T. Kasuga, M. Hiramatsu,A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing,” Adv. Mater., 11(15), 1307-1311, 1999.
  • [18] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, “Preparation and structure analysis of titanium oxide nanotubes,” Appl. Phys. Lett., 79(22), 3702-3704, 2001.
  • [19] M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, “Formation of titania nanotubes and applications for dye-sensitized solar cells,” J. Electrochem. Soc., 150(8), 488-493, 2003.
  • [20] H. H. Ou, S. L. Lo, “Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application,” Sep. Purif. Technol., 58(1), 179-191, 2007.
  • [21] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, “Hydrothermal synthesis of titania nanotube and its application for dye-sensitized solar cell,” Stud. Surf. Sci. Catal., 70(6), 418, 2002.
  • [22] K. S. Raja, M. Misra, and K. Paramguru, “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium,” Electrochim. Acta, 51(1),154-165, 2005.
  • [23] T. Kisumi, A. Tsujiko, K. Murakoshi, and Y. Nakato, “Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes,” J. Electroanal. Chem., 545, 99-107, 2003.
  • [24] J. Yu, H. Yu, “Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals,” Mater. Chem. Phys., 100(2–3), 507-512, 2006.
  • [25] N. Liu, X. Chen, J. Zhang, and J. W. Schwank, “A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications,” Catalysis Today, 225, 34-51, 2014.
  • [26] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications,” Adv. Mater., 18(21), 2807-2824, 2006.
  • [27] A. L. Papa, N. Millot, L. Saviot, R. Chassagnon, and O. Heintz, “Effect of reaction parameters on composition and morphology of titanate nanomaterials,” J. Phys. Chem., 113(29), 12682-12689, 2009.
  • [28] M. Inagaki, N. Kondo, R. Nonaka, E. Ito, M. Toyoda, K. Sogabe, and T. Tsumura, “Structure and photoactivity of titania derived from nanotubes and nanofibers,” J. Hazard Mater., 161(2-3), 1514-1521, 2009.
  • [29] W. Zhou, H. Liu, R.I. Boughton, G. Du, J. Lin, J. Wang, and D. Liu, “One-dimensional single-crystalline Ti-O based nanostructures: Properties, synthesis, modifications and applications,” J. Mater. Chem., 20(29), 5993-6008, 2010.
  • [30] Z. Y. Yuan, B. L. Su, “Titanium oxide nanotubes, nanofibers and nanowires,” Colloids Surfaces A Physicochem. Eng. Asp., 241(1-3),173-183, 2004.
  • [31] S. Thennarasu, K. Rajasekar, and K. Balkis Ameen, “Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons,” J. Mol. Struct., 1049, 446-457, 2013.
  • [32] N. Keklikcioğlu Çakmak, G. Topal Canbaz, “TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu,” Gümüşhane Fen Bil. Ens. Der., 10(1), 86-98, 2020.
  • [33] T. H. T. Vu, H. T. Au, L. T. Tran, T. M. T. Nguyen, T. T. T. Tran, M. T. Pham, M. H. Do, and D. L. Nguyen, “Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process,” J. Mater. Sci., 49(16), 5617-5625, 2014.
  • [34] L. Cui, K. N. Hui, K. S. Hui, S. K. Lee, W. Zhou, Z. P. Wan, “Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes,” Mater. Lett., 75, 175–178, 2012.
  • [35] S.M.Z. Khaled, R. J. Miron, D. W. Hamilton,P. A. Charpentier, A. S. Rizkalla, “Reinforcement of resin based cement with titania nanotubes,”Dental Mat., 26, 169–178, 2010.
  • [36] K. Goto, J. Tamura, S. Shinzato, S. Fujibayashi, M. Hashimoto, M. Kawashita, T. Kokubo, T.Nakamura, “Bioactive bone cements containing nano-sized titania particles for use as bone substitutes, ”Biomaterials, 26 (33),6496–505, 2005.

Fonksiyonelleştirilmiş Titanyum Dioksit Nanotüp Sentezi

Yıl 2020, Cilt: 15 Sayı: 1, 167 - 176, 31.05.2020
https://doi.org/10.29233/sdufeffd.666020

Öz

TiO2 nanotüp sentezi ile ilgili yapılan çalışmalarda belirtilen koşullarda nanotüplerin oluştuğu yönünde sonuçlar verilirken, karakterizasyon sonuçlarının nano malzemenin toz formuna ait olduğu, tübüler yapılara ait formların oluşmadığı görülmektedir. Bu çalışmada titanyum dioksit (TiO2) tozundan hidrotermal sentez yöntemi ile TiO2 nanotüpleri elde edildi. Nanotüp sentezi için deney şartları optimize edildikten sonra elde edilen TiO2 nanotüplerin metakrilik asit ile fonksiyonlaştırma işlemi gerçekleştirildi. TiO2 tozunun yapısı, hidrotermal koşullar (sıcaklık, reaktiflerin konsantrasyonu ve hidrotermal süresi) ve sonraki yıkama işlemleri, TiO2 nanotüp yapısını (kristalografi ve morfoloji) ve fiziksel-kimyasal özelliklerini belirlemede önemli bir rol aldığı gözlendi. Sentezlenen nanotüp yapıları, Enerji Dağılım Spektrometresi (EDS), Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), X-Işını Kırınım Difraktometresi (XRD) ve Taramalı Elektron Mikroskobu (SEM) ile karakterize edildi.

Kaynakça

  • [1] M. Naquib, Y. Gogotsi, “Synthesis of two-dimensional materials by selective extraction,” Acc. Chem. Res., 48(4), 128-135, 2014.
  • [2] T. Öztürk, “Production and characterization of TiO2 nanotubes on CP titanium surface,” M.S. thesis, Dept. Mater. Eng., Istanbul Univ., Istanbul, Turkey, 2012.
  • [3] K. Jukk, N. Kongi, “Electrochemical oxygen reduction behaviour of platinum nanoparticles supported on multi-walled carbon nanotube/titanium dioxide composites,” J. Electroanal. Chem., 735, 68-76, 2014.
  • [4] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. Appl. Phys., 44(12), 8269-8285, 2005.
  • [5] A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and select result,” Chem. Rev., 95(3), 735-758, 1995.
  • [6] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., 11(1-2), 3-18, 2007.
  • [7] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., 48(5-8), 53-229, 2003.
  • [8] A. Hagfeldt, M. Graetzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., 95(1), 49-68, 1995.
  • [9] A. Mills, S. Le Hunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol. A Chem., 108(1), 1-35, 1997.
  • [10] S. Eustis, M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., 35(3), 209-217, 2006.
  • [11] N.M Mohsen, R.G. Craig, “Effect of silanation of fillers on their dispersability by monomersystems,” Jour. of Oral Rehabil., 22(3),183-89, 1995.
  • [12] X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications,” Chem. Rev., 107(7), 2891-2959, 2007.
  • [13] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials synthesis properties and applications,” Adv. Mater., 18(21), 2807-2824, 2006.
  • [14] A. Ghicov, P. Schmuki, “Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures,” Chem. Commun., 28(20), 2791-2808, 2009.
  • [15] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, “Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates,” Adv. Mater., 16(22), 2052-2057, 2004.
  • [16] D. Zhang, L. Qi, J. Ma, and H. Cheng, “Formation on crystalline nanosized titania in reverse micelles at room temperature,” J. Mater. Chem., 12(12), 3677-3680, 2002.
  • [17] T. Kasuga, M. Hiramatsu,A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing,” Adv. Mater., 11(15), 1307-1311, 1999.
  • [18] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, “Preparation and structure analysis of titanium oxide nanotubes,” Appl. Phys. Lett., 79(22), 3702-3704, 2001.
  • [19] M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, “Formation of titania nanotubes and applications for dye-sensitized solar cells,” J. Electrochem. Soc., 150(8), 488-493, 2003.
  • [20] H. H. Ou, S. L. Lo, “Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application,” Sep. Purif. Technol., 58(1), 179-191, 2007.
  • [21] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, “Hydrothermal synthesis of titania nanotube and its application for dye-sensitized solar cell,” Stud. Surf. Sci. Catal., 70(6), 418, 2002.
  • [22] K. S. Raja, M. Misra, and K. Paramguru, “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium,” Electrochim. Acta, 51(1),154-165, 2005.
  • [23] T. Kisumi, A. Tsujiko, K. Murakoshi, and Y. Nakato, “Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes,” J. Electroanal. Chem., 545, 99-107, 2003.
  • [24] J. Yu, H. Yu, “Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals,” Mater. Chem. Phys., 100(2–3), 507-512, 2006.
  • [25] N. Liu, X. Chen, J. Zhang, and J. W. Schwank, “A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications,” Catalysis Today, 225, 34-51, 2014.
  • [26] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications,” Adv. Mater., 18(21), 2807-2824, 2006.
  • [27] A. L. Papa, N. Millot, L. Saviot, R. Chassagnon, and O. Heintz, “Effect of reaction parameters on composition and morphology of titanate nanomaterials,” J. Phys. Chem., 113(29), 12682-12689, 2009.
  • [28] M. Inagaki, N. Kondo, R. Nonaka, E. Ito, M. Toyoda, K. Sogabe, and T. Tsumura, “Structure and photoactivity of titania derived from nanotubes and nanofibers,” J. Hazard Mater., 161(2-3), 1514-1521, 2009.
  • [29] W. Zhou, H. Liu, R.I. Boughton, G. Du, J. Lin, J. Wang, and D. Liu, “One-dimensional single-crystalline Ti-O based nanostructures: Properties, synthesis, modifications and applications,” J. Mater. Chem., 20(29), 5993-6008, 2010.
  • [30] Z. Y. Yuan, B. L. Su, “Titanium oxide nanotubes, nanofibers and nanowires,” Colloids Surfaces A Physicochem. Eng. Asp., 241(1-3),173-183, 2004.
  • [31] S. Thennarasu, K. Rajasekar, and K. Balkis Ameen, “Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons,” J. Mol. Struct., 1049, 446-457, 2013.
  • [32] N. Keklikcioğlu Çakmak, G. Topal Canbaz, “TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu,” Gümüşhane Fen Bil. Ens. Der., 10(1), 86-98, 2020.
  • [33] T. H. T. Vu, H. T. Au, L. T. Tran, T. M. T. Nguyen, T. T. T. Tran, M. T. Pham, M. H. Do, and D. L. Nguyen, “Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process,” J. Mater. Sci., 49(16), 5617-5625, 2014.
  • [34] L. Cui, K. N. Hui, K. S. Hui, S. K. Lee, W. Zhou, Z. P. Wan, “Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes,” Mater. Lett., 75, 175–178, 2012.
  • [35] S.M.Z. Khaled, R. J. Miron, D. W. Hamilton,P. A. Charpentier, A. S. Rizkalla, “Reinforcement of resin based cement with titania nanotubes,”Dental Mat., 26, 169–178, 2010.
  • [36] K. Goto, J. Tamura, S. Shinzato, S. Fujibayashi, M. Hashimoto, M. Kawashita, T. Kokubo, T.Nakamura, “Bioactive bone cements containing nano-sized titania particles for use as bone substitutes, ”Biomaterials, 26 (33),6496–505, 2005.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Banu Türkaslan 0000-0003-3948-6207

Melek Aktaş 0000-0001-5172-5261

Sultan Akar 0000-0003-2449-0975

Yayımlanma Tarihi 31 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 15 Sayı: 1

Kaynak Göster

IEEE B. Türkaslan, M. Aktaş, ve S. Akar, “Fonksiyonelleştirilmiş Titanyum Dioksit Nanotüp Sentezi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 15, sy. 1, ss. 167–176, 2020, doi: 10.29233/sdufeffd.666020.