A Theoretical Study on Electronic Behavior and Mechanical Properties of Ferromagnetic Manganese Selenide: AgMn2Se4
Yıl 2021,
Cilt: 16 Sayı: 2, 339 - 348, 25.11.2021
Aytaç Erkişi
,
Gokhan Surucu
Öz
In this study, the electronic behavior and mechanical properties of the ferromagnetic chalcospinel manganese-based selenide (AgMn2Se4) which crystallized in face centered cubic structure with space group Fd3 ̅m and space number 227, were investigated. All ab initio calculations were carried out by Generalized Gradient Approximation (GGA) under spin polarization. For this composition, three different type magnetic orders were considered to detect the most stable magnetic character. For the given composition, the results of the computations indicate its ferromagnetic nature since this compound has a lower ground state energy in this magnetic order than in other magnetic phases. After determining the most energetically stable magnetic phase, the electronic behavior in this magnetic arrangement was examined. The observed electronic band structure under spin polarization of this compound shows that this selenide system is almost half-metallic material due to having small band gap (Eg = 0.09 eV) in the minority spin state. In addition, the mechanical stability was determined with the help of elastic constants which were also employed to determine the mechanical characteristics of this compound.
Destekleyen Kurum
Pamukkale University Research Project Unit
Proje Numarası
project number 2019BSP013
Kaynakça
- [1] I. Efthimiopoulos, Z. T. Y. Liu, S. V. Khare, P. Sarin, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang “Structural transition in the magnetoelectric ZnCr2Se4 spinel under pressure,” Phys. Rev. B, 93, 174103, 2016.
- [2] C. J. Fennie and K. M. Rabe, “Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles,” Phys. Rev. B, 72, 214123, 2005.
- [3] H. Sims, K. Ramasamy, W. H. Butler, and A. Gupta “Electronic structure of magnetic semiconductor CdCr2Te4: A possible spin-dependent symmetry filter,” Appl. Phys. Lett., 103, 192402, 2013.
- [4] A. S. Cameron, Y. V. Tymoshenko, P. Y. Portnichenko, J. Gavilano, V. Tsurkan, V. Felea, A. Loidl, S. Zherlitsyn, J. Wosnitza, and D. S. Inosov, “Magnetic phase diagram of the helimagnetic spinel compound ZnCr2Se4 revisited by small-angle neutron scattering,” J. Phys. Condens. Matter., 28, 146001, 2016.
- [5] N. Menyuk, K. Dwight, and R. J. Arnott, “Ferromagnetism in CdCr2Se4 and CdCr2S4,” J. Appl. Phys., 37, 1387–1388, 1966.
- [6] M. Tachibana, N. Taira, and H. Kawaji, “Heat capacity and thermal expansion of CdCr2Se4 and CdCr2S4,” Solid State Commun., 151, 1776–1779, 2011.
- [7] S. Kitani, M. Tachibana, and H. Kawaji, “Spin-glass-like behavior in ferromagnetic phase of CdCr2S4,” Solid State Commun., 179, 16–19, 2014.
- [8] K. Ramasamy, D. Mazumdar, R. D. Bennett, and A. Gupta, “Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals,” Chem. Commun., 48, 5656-5658, 2012.
- [9] T. Kanomata, H. Ido, and T. Kaneko, “Effect of pressure on Curie temperature of calcogenide spinels CuCr2X4 (X=S, Se and Te),” J. Phys. Soc. Jpn., 29, 332-335, 1970.
- [10] T. Suzuyama, J. Awaka, H. Yamamoto, S. Ebisu, M. Ito, T. Suzuki, T. Nakama, K. Yagasaki, and S. J. Nagata, “Ferromagnetic-phase transition in the spinel-type CuCr2Te4,” Solid State Chem., 179, 140-144, 2006.
- [11] R. Li, C. Zhang, and Y. Zhang, “Critical properties of the 3D-Heisenberg ferromagnet CuCr2Te4,” Solid State Commun., 152, 173-176, 2012.
- [12] W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- [13] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- [14] P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- [15] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- [16] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- [17] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett, 77, 3865-3868, 1996.
- [18] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- [19] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827–5836, 2017.
- [20] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- [21] Y. L. Page, and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
- [22] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
- [23] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics.” Mater. Sci. Technol., 8, 345-349, 1992.
- [24] W. Voigt, Lehrbuch der Kristallphysik. B. G. Teubner, Leipzig und Berlin, 1928.
- [25] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49-58, 1929.
- [26] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc., A 65, 349-354, 1952.
- [27] D. H. Wu, H. C. Wang, L.T. Wei, R. K. Pan, and B. Y. Tang, “First-principles study of structural stability and elastic properties of MgPd3 and its hydride,” J. Magnes. Alloy., 2, 165–174, 2014.
- [28] S.F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Lond. Edinb. Dubl. Phil. Mag., 45, 823–843, 1954.
- [29] G. Surucu, “Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-inito study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds,” Mater. Chem. Phys., 203, 106–117, 2018.
- [30] V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Phys. Status. Solidi – Rapid. Res. Lett., 1, 89–91, 2007.
- [31] K. Lau and A. K. McCurdy, “Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals,” Phys. Rev. B, 58, 8980–8984, 1998.
Ferromanyetik Manganez Selenyumun Elektronik Davranışı ve Mekaniksel Özellikleri Üzerine Teorik Bir Çalışma: AgMn2Se4
Yıl 2021,
Cilt: 16 Sayı: 2, 339 - 348, 25.11.2021
Aytaç Erkişi
,
Gokhan Surucu
Öz
Bu çalışmada Fd3 ̅m uzay grubu ve 227 uzay numarası ile yüz merkezli kübik yapıda kristalleşen ferromanyetik kalgospinel manganez bazlı selenidin (AgMn2Se4) elektronik davranışı ve mekanik özellikleri incelenmiştir. Tüm başlangıç hesaplamaları, spin polarizasyonu altında Genelleştirilmiş Gradient Yaklaşımı (GGY) ile gerçekleştirildi. Söz konusu kompozisyon için hesaplamaların sonuçları onun ferromanyetik doğasına işaret etmektedir çünkü bu bileşik bu manyetik düzende diğer manyetik fazlarda olduğundan daha düşük taban durumu enerjisine sahiptir. Enerjitik olarak en kararlı manyetik faz tespit edildikten sonra bu manyetik düzendeki elektronik davranış incelenmiştir. Bu bileşiğin spin polarizasyon altında gözlenen elektronik bant yapısı azınlık spin durumunda küçük bir bant aralığına (Eb = 0.09 eV) sahip olması nedeniyle bu selenid sistemin neredeyse yarı-metalik bir malzeme olduğunu göstermektedir. Ek olarak, elastik sabitlerden yararlanılarak mekaniksel kararlılık belirlenmiş ve bu sabitler kullanılarak bu bileşiğin mekaniksel özellikleri elde edilmiştir.
Proje Numarası
project number 2019BSP013
Kaynakça
- [1] I. Efthimiopoulos, Z. T. Y. Liu, S. V. Khare, P. Sarin, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang “Structural transition in the magnetoelectric ZnCr2Se4 spinel under pressure,” Phys. Rev. B, 93, 174103, 2016.
- [2] C. J. Fennie and K. M. Rabe, “Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles,” Phys. Rev. B, 72, 214123, 2005.
- [3] H. Sims, K. Ramasamy, W. H. Butler, and A. Gupta “Electronic structure of magnetic semiconductor CdCr2Te4: A possible spin-dependent symmetry filter,” Appl. Phys. Lett., 103, 192402, 2013.
- [4] A. S. Cameron, Y. V. Tymoshenko, P. Y. Portnichenko, J. Gavilano, V. Tsurkan, V. Felea, A. Loidl, S. Zherlitsyn, J. Wosnitza, and D. S. Inosov, “Magnetic phase diagram of the helimagnetic spinel compound ZnCr2Se4 revisited by small-angle neutron scattering,” J. Phys. Condens. Matter., 28, 146001, 2016.
- [5] N. Menyuk, K. Dwight, and R. J. Arnott, “Ferromagnetism in CdCr2Se4 and CdCr2S4,” J. Appl. Phys., 37, 1387–1388, 1966.
- [6] M. Tachibana, N. Taira, and H. Kawaji, “Heat capacity and thermal expansion of CdCr2Se4 and CdCr2S4,” Solid State Commun., 151, 1776–1779, 2011.
- [7] S. Kitani, M. Tachibana, and H. Kawaji, “Spin-glass-like behavior in ferromagnetic phase of CdCr2S4,” Solid State Commun., 179, 16–19, 2014.
- [8] K. Ramasamy, D. Mazumdar, R. D. Bennett, and A. Gupta, “Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals,” Chem. Commun., 48, 5656-5658, 2012.
- [9] T. Kanomata, H. Ido, and T. Kaneko, “Effect of pressure on Curie temperature of calcogenide spinels CuCr2X4 (X=S, Se and Te),” J. Phys. Soc. Jpn., 29, 332-335, 1970.
- [10] T. Suzuyama, J. Awaka, H. Yamamoto, S. Ebisu, M. Ito, T. Suzuki, T. Nakama, K. Yagasaki, and S. J. Nagata, “Ferromagnetic-phase transition in the spinel-type CuCr2Te4,” Solid State Chem., 179, 140-144, 2006.
- [11] R. Li, C. Zhang, and Y. Zhang, “Critical properties of the 3D-Heisenberg ferromagnet CuCr2Te4,” Solid State Commun., 152, 173-176, 2012.
- [12] W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- [13] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- [14] P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- [15] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- [16] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- [17] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett, 77, 3865-3868, 1996.
- [18] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- [19] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827–5836, 2017.
- [20] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- [21] Y. L. Page, and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
- [22] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
- [23] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics.” Mater. Sci. Technol., 8, 345-349, 1992.
- [24] W. Voigt, Lehrbuch der Kristallphysik. B. G. Teubner, Leipzig und Berlin, 1928.
- [25] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49-58, 1929.
- [26] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc., A 65, 349-354, 1952.
- [27] D. H. Wu, H. C. Wang, L.T. Wei, R. K. Pan, and B. Y. Tang, “First-principles study of structural stability and elastic properties of MgPd3 and its hydride,” J. Magnes. Alloy., 2, 165–174, 2014.
- [28] S.F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Lond. Edinb. Dubl. Phil. Mag., 45, 823–843, 1954.
- [29] G. Surucu, “Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-inito study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds,” Mater. Chem. Phys., 203, 106–117, 2018.
- [30] V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Phys. Status. Solidi – Rapid. Res. Lett., 1, 89–91, 2007.
- [31] K. Lau and A. K. McCurdy, “Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals,” Phys. Rev. B, 58, 8980–8984, 1998.