Araştırma Makalesi
BibTex RIS Kaynak Göster

LINEAR STATIC ANALYSIS OF LAMINATED COMPOSITE PLATES WITH LAYERWISE FINITE ELEMENT

Yıl 2014, Cilt: 32 Sayı: 3, 297 - 309, 01.09.2014

Öz

This article is about a layerwise finite element which is developed for the linear static analysis of laminated composite plates. In the first part; the paper presents a review of the literature involving the available theories and their drawbacks for multilayered composite plates. A second part reviews a relevant keypoint (zig-zag form of the displacement field in the thickness direction) that should be considered for an accurate stress and strain field. In the third part, the paper explains the layerwise finite element and the derivation of its stiffness matrix. The final part of the paper is devoted to giving a comparison of selected results that can be acquired either by layerwise finite element(Genson) or the other available theories in the literature.

Kaynakça

  • [1] Kirchhoff G., “Uber das Gleichgewicht und die Bewegung einer elastishen Scheibe”, J.Angew Math., 40, 51-88, 1850.
  • [2] Bhar, A., Phoenix, S.S. and Satsangi, S.K. (2010), “Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective”, Composite Structures., 92, 312-321.
  • [3] Love, A.E.H. (1927), The Mathematical Theory of Elasticity, (4th Edition), Cambridge Univ Press, Cambridge.
  • [4] Cauchy, A.L. (1828), “Sur l’equilibre et le mouvement d’une plaque solide”, Exercises de Mathematique., 3, 328-355.
  • [5] Thai, C.H., Tran L.C., Tran D.T., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2012), “Analysis of laminated composite plates using higher order shear deformation plate theory and node based smoothed discrete shear gap method”, Applied Mathematical Modelling., 36, 5657- 5677.
  • [6] Poisson, S.D. (1829), “Memoire sur l’equilibre et le mouvement des corps elastique”, Mem. Acad. Sci., 8, 357.
  • [7] Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic plates”, ASME J. Appl. Mech., 12, 69-76.
  • [8] Mindlin, R.D. (1951), “Influence of rotary inertia and shear in flexural motions of isotropic elastic plates”, ASME J. Appl. Mech., 18, 1031-1036.
  • [9] Mendonça, P.T.R., Barcellos, C.S. and Torres, D.A.F. (2013), “Robust C^k/C^0 generalized FEM approximations for higher-order conformity requirements: Application to Reddy’s HSDT model for anisotropic laminated plates”, Composite Structures., 96, 332-345.
  • [10] Jones, R.M. (1975), Mechanics of Composite Materials, Mc Graw Hill, New York.
  • [11] Whitney, J. (1969), “The effects of transverse shear deformation on the bending of laminated plates”, J. Compos. Mater., 3, 534-547.
  • [12] Reddy, J.N. (1997), Mechanics of Laminated Composite Plates. Theory and Analysis, CRC Press, Boca Raton FL.
  • [13] Von Karman, T. (1910), “Festigkeitsprobleme in Maschinenbau”, Encyklopadie der Mathematischen Wissenschaften, 4, 311-385.
  • [14] Pagano, N.J. and Hatfield, S.J. (1972), “Elastic Behavior of Multilayered Bidirectional Composites”, AIAA Journal, 10, 931-933.
  • [15] Pagano, N.J. (1969), “Exact Solutions for Composite Laminates in Cylindrical Bending”, Journal of Composite Materials, 3, 398-411.
  • [16] Carrera, E. and Kröplin, B. (1997), “Zig-zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates”, Mechanics of Composite Materials and Structures, 4, 69-94.
  • [17] Reddy, J.N. (2005), An Introduction to the Finite Element Method, Mc Graw Hill, NY.
  • [18] Ugural, A.C. (1981), Stresses in Plates and Shells, Mc Graw Hill, New York.
  • [19] Wilt, T.E., Saleeb, A.F. and Chang, T.Y. (1990), “A mixed element for laminated plates and shells”, Computers and Structures., 37, 597-611.
  • [20] Leiknitshki, S. (1968), Anisotropic Plates.
  • [21] Huu-Tai, T. and Dong-Ho, C. (2013), “A simple first order shear deformation theory for laminated composite plates”, Composite Structures, 106, 754-763
  • [22] Murthy, S.S. and Lakshminarayana, H.V. (1984), “A shear flexible triangular finite element model for laminated composite plates”, Journal for Numerical Methods in Engineering, 20, 591-623.
Yıl 2014, Cilt: 32 Sayı: 3, 297 - 309, 01.09.2014

Öz

Kaynakça

  • [1] Kirchhoff G., “Uber das Gleichgewicht und die Bewegung einer elastishen Scheibe”, J.Angew Math., 40, 51-88, 1850.
  • [2] Bhar, A., Phoenix, S.S. and Satsangi, S.K. (2010), “Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective”, Composite Structures., 92, 312-321.
  • [3] Love, A.E.H. (1927), The Mathematical Theory of Elasticity, (4th Edition), Cambridge Univ Press, Cambridge.
  • [4] Cauchy, A.L. (1828), “Sur l’equilibre et le mouvement d’une plaque solide”, Exercises de Mathematique., 3, 328-355.
  • [5] Thai, C.H., Tran L.C., Tran D.T., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2012), “Analysis of laminated composite plates using higher order shear deformation plate theory and node based smoothed discrete shear gap method”, Applied Mathematical Modelling., 36, 5657- 5677.
  • [6] Poisson, S.D. (1829), “Memoire sur l’equilibre et le mouvement des corps elastique”, Mem. Acad. Sci., 8, 357.
  • [7] Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic plates”, ASME J. Appl. Mech., 12, 69-76.
  • [8] Mindlin, R.D. (1951), “Influence of rotary inertia and shear in flexural motions of isotropic elastic plates”, ASME J. Appl. Mech., 18, 1031-1036.
  • [9] Mendonça, P.T.R., Barcellos, C.S. and Torres, D.A.F. (2013), “Robust C^k/C^0 generalized FEM approximations for higher-order conformity requirements: Application to Reddy’s HSDT model for anisotropic laminated plates”, Composite Structures., 96, 332-345.
  • [10] Jones, R.M. (1975), Mechanics of Composite Materials, Mc Graw Hill, New York.
  • [11] Whitney, J. (1969), “The effects of transverse shear deformation on the bending of laminated plates”, J. Compos. Mater., 3, 534-547.
  • [12] Reddy, J.N. (1997), Mechanics of Laminated Composite Plates. Theory and Analysis, CRC Press, Boca Raton FL.
  • [13] Von Karman, T. (1910), “Festigkeitsprobleme in Maschinenbau”, Encyklopadie der Mathematischen Wissenschaften, 4, 311-385.
  • [14] Pagano, N.J. and Hatfield, S.J. (1972), “Elastic Behavior of Multilayered Bidirectional Composites”, AIAA Journal, 10, 931-933.
  • [15] Pagano, N.J. (1969), “Exact Solutions for Composite Laminates in Cylindrical Bending”, Journal of Composite Materials, 3, 398-411.
  • [16] Carrera, E. and Kröplin, B. (1997), “Zig-zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates”, Mechanics of Composite Materials and Structures, 4, 69-94.
  • [17] Reddy, J.N. (2005), An Introduction to the Finite Element Method, Mc Graw Hill, NY.
  • [18] Ugural, A.C. (1981), Stresses in Plates and Shells, Mc Graw Hill, New York.
  • [19] Wilt, T.E., Saleeb, A.F. and Chang, T.Y. (1990), “A mixed element for laminated plates and shells”, Computers and Structures., 37, 597-611.
  • [20] Leiknitshki, S. (1968), Anisotropic Plates.
  • [21] Huu-Tai, T. and Dong-Ho, C. (2013), “A simple first order shear deformation theory for laminated composite plates”, Composite Structures, 106, 754-763
  • [22] Murthy, S.S. and Lakshminarayana, H.V. (1984), “A shear flexible triangular finite element model for laminated composite plates”, Journal for Numerical Methods in Engineering, 20, 591-623.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Research Articles
Yazarlar

Kazım Ahmet Haşim Bu kişi benim

Ahmet Işın Saygun Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2014
Gönderilme Tarihi 12 Şubat 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 32 Sayı: 3

Kaynak Göster

Vancouver Haşim KA, Saygun AI. LINEAR STATIC ANALYSIS OF LAMINATED COMPOSITE PLATES WITH LAYERWISE FINITE ELEMENT. SIGMA. 2014;32(3):297-309.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/