Araştırma Makalesi
BibTex RIS Kaynak Göster

Pythagorean Bulanık Bi-ideallerin Bazı Cebirsel Özellikleri

Yıl 2025, Cilt: 10 Sayı: 1, 42 - 59, 29.06.2025
https://doi.org/10.33484/sinopfbd.1524118

Öz

Bulanık kümeler, belirsizlik içeren problemlerin çözümünde çok önemli bir yere sahiptir. Karar verme, mühendislik, cebir vb. alanlarda bulanık kümeler üzerine çok sayıda çalışma vardır. Bu çalışmada, bulanık kümelerin bir tür genelleştirilmesi olan Pythagorean bulanık kümelerin cebir de ki davranışlarını tartışıyoruz. İlk olarak, Pythagorean bulanık çarpımı tanımlıyoruz ve bazı özelliklerini inceliyoruz. Ardından, Pythagorean bulanık ideali ile Pythagorean bulanık çarpımı arasındaki ilişkiyi araştırıyoruz. Sonra, Pythagorean bulanık bi-ideali tanımlıyoruz. Bi-idealleri bulanık bi-idealler açısından karakterize eden teoremi veriyoruz. Pythagorean bulanık bi-ideallerin Pythagorean bulanık çarpım altındaki davranışlarını inceliyoruz. Pythagorean bulanık bi-ideallerin arakesitinin, kartezyen çarpımının ve Pythagorean bulanık çarpımının da Pythagorean bulanık bi-ideal olduğunu ispatlıyoruz. Dahası, Pythagorean bulanık bi-idealinin görüntüsünü ve ters görüntüsünü araştırıyoruz.

Kaynakça

  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Pawlak, Z. (1982). Rough sets. International Journal of Information and Computer Sciences, 11, 341–356. https://doi.org/10.1007/BF01001956
  • Molodstov, D.A. (1999). Soft set sheory-first results. Computers and Mathematics with Applications, 37, 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
  • Yager R.R. (2013). Pythagorean fuzzy subsets. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, (pp.57–61). https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
  • Yager R.R. (2016). Properties and application of Pythagorean fuzzy sets. Imprecision and uncertainty in information representation and processing, Springer, (pp. 119–136). https://doi.org/10.1007/978-3-319-26302-1-9
  • Zhang X.L. & Z. S. Xu (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems, 29, 1061–1078. https://doi.org/10.1002/int.21676
  • Peng X. & Yang Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30, 1133–1160. https://doi.org/10.1002/int.21738
  • Peng, X. & Yang, Y. (2016). Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. International Journal of Intelligent Systems, 31, 444–487. https://doi.org/10.1002/int.21790
  • Dick S., Yager R.R. & Yazdanbakhsh O. (2016). On Pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst., 24(5), 1009–1021. https://doi.org/10.1109/TFUZZ.2015.2500273
  • Gou X.J., Xu Z.S. & Ren P.J. (2016). The properties of continuous Pyhagorean fuzzy information. International Journal of Intelligent Systems, 31(5), 401–424. https://doi.org/10.1002/int.21788
  • Pérez-Domínguez, L., Rodríguez-Picón, L.A., Alvarado-Iniesta, A., Cruz, L. & Xu, Z. (2018). MOORAunder Pythagorean fuzzy Set for Multiple Criteria Decision Making, Complexity, Article ID 2602376, 10 pages. https://doi.org/10.1155/2018/2602376
  • Naz, S., Ashraf, S. & Akram, M. (2018). A novel approach to decision-making with Pythagorean fuzzy information. Mathematics, 6(6), 1–28. https://doi.org/10.3390/math6060095
  • Xiao F.Y. &Ding, W.P. (2019). Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Applied Soft Computing, 79, 254–267. https://doi.org/10.1016/j.asoc.2019.03.043
  • Wang, Z., Xiao, F.Y. & Cao, Z.H. (2022). Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making. Soft Computing, 26, 9937–9952. https://doi.org/10.1007/s00500-022-07361-9
  • Kirişci, M. & Şimşek, N. (2022). Decision-making method related to Pythagorean fuzzy Soft Sets with infectious diseases application. Journal of King Saud University- Computer and Information Sciences, 34(8), 5968–5978. https://doi.org/10.1016/j.jksuci.2021.08.010
  • Kumar, K. & Chen, S.M. (2023). Group decision making based on entropy measure of Pythagorean fuzzy sets and Pythagorean fuzzy weighted arithmetic mean aggregation operator of Pythagorean fuzzy numbers. Information Sciences, 624, 361–377. https://doi.org/10.1016/j.ins.2022.12.064
  • Olgun, M. & Ünver, M., Yardımcı, Ş. (2019). Pythagorean fuzzy topological spaces. Complex and Intelligent Systems, 5, 177–183. https://doi.org/10.1007/s40747-019-0095-2
  • Hussain, A., Mahmood, T. & Ali, M.I. (2019). Rough Pythagorean fuzzy ideals in semigroups. Computational and Applied Mathematics, 38 (67). https://doi.org/10.1007/s40314-019-0824-6
  • Bhunia, S., Ghorai, G. & Xin, Q. (2021). On the characterization of Pythagorean fuzzy subgroups. AIMS Mathematics, 6(1), 962–978. https://doi.org/10.3934/math.2021058
  • Bhunia, S., Ghorai, G., Xin, Q. & Gulzar, M. (2022). On the algebraic attributes of (α,β)-Pythagorean fuzzy subrings and (α,β)-Pythagorean fuzzy ideals of rings, IEEE Access, 10, 11048–11056. https://doi.org/10.1109/ACCESS.2022.3145376
  • Razaq, A., Alhamzi, G., Razzaque, A. & Garg, H. (2022). A Comprehensive Study on Pythagorean fuzzy Normal Subgroups and Pythagorean fuzzy Isomorphisms. Symmetry, 14, 2084. https://doi.org/10.3390/sym14102084
  • Razaq, A. & Alhamzi, G. (2023). On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 8(2), 4280–4303. https://doi.org/10.3934/math.2023213
  • Adak, A.K. & Kumar, D. (2022). Some Properties of Pythagorean Fuzzy Ideals of Γ-Near-Rings. Palestine Journal of Mathematics, 11(4), 336–346.

Some Algebraic Properties of Pythagorean Fuzzy Bi-ideals

Yıl 2025, Cilt: 10 Sayı: 1, 42 - 59, 29.06.2025
https://doi.org/10.33484/sinopfbd.1524118

Öz

Fuzzy sets have a significant place in solving problems involving uncertainty. There are many studies on fuzzy sets in decision-making, engineering, algebra, etc. In this study, we discuss the behavior of Pythagorean fuzzy sets, which are a kind of generalization of fuzzy sets in algebra. First, we define the Pythagorean fuzzy product and examine some of its properties. Then, we investigate the relationship between the Pythagorean fuzzy ideal and the Pythagorean fuzzy product. Then, we define Pythagorean fuzzy bi-ideal. We give the theorem that characterizes bi-ideals in terms of fuzzy bi-ideals. We examine the behavior of Pythagorean fuzzy bi-ideals under Pythagorean fuzzy product. We prove that the intersection, Cartesian product, and Pythagorean fuzzy product of Pythagorean fuzzy bi-ideals are also Pythagorean fuzzy bi-ideals. Furthermore, we investigate the image and the inverse image of the Pythagorean fuzzy bi-ideal.

Kaynakça

  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Pawlak, Z. (1982). Rough sets. International Journal of Information and Computer Sciences, 11, 341–356. https://doi.org/10.1007/BF01001956
  • Molodstov, D.A. (1999). Soft set sheory-first results. Computers and Mathematics with Applications, 37, 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
  • Yager R.R. (2013). Pythagorean fuzzy subsets. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, (pp.57–61). https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
  • Yager R.R. (2016). Properties and application of Pythagorean fuzzy sets. Imprecision and uncertainty in information representation and processing, Springer, (pp. 119–136). https://doi.org/10.1007/978-3-319-26302-1-9
  • Zhang X.L. & Z. S. Xu (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems, 29, 1061–1078. https://doi.org/10.1002/int.21676
  • Peng X. & Yang Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30, 1133–1160. https://doi.org/10.1002/int.21738
  • Peng, X. & Yang, Y. (2016). Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. International Journal of Intelligent Systems, 31, 444–487. https://doi.org/10.1002/int.21790
  • Dick S., Yager R.R. & Yazdanbakhsh O. (2016). On Pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst., 24(5), 1009–1021. https://doi.org/10.1109/TFUZZ.2015.2500273
  • Gou X.J., Xu Z.S. & Ren P.J. (2016). The properties of continuous Pyhagorean fuzzy information. International Journal of Intelligent Systems, 31(5), 401–424. https://doi.org/10.1002/int.21788
  • Pérez-Domínguez, L., Rodríguez-Picón, L.A., Alvarado-Iniesta, A., Cruz, L. & Xu, Z. (2018). MOORAunder Pythagorean fuzzy Set for Multiple Criteria Decision Making, Complexity, Article ID 2602376, 10 pages. https://doi.org/10.1155/2018/2602376
  • Naz, S., Ashraf, S. & Akram, M. (2018). A novel approach to decision-making with Pythagorean fuzzy information. Mathematics, 6(6), 1–28. https://doi.org/10.3390/math6060095
  • Xiao F.Y. &Ding, W.P. (2019). Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Applied Soft Computing, 79, 254–267. https://doi.org/10.1016/j.asoc.2019.03.043
  • Wang, Z., Xiao, F.Y. & Cao, Z.H. (2022). Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making. Soft Computing, 26, 9937–9952. https://doi.org/10.1007/s00500-022-07361-9
  • Kirişci, M. & Şimşek, N. (2022). Decision-making method related to Pythagorean fuzzy Soft Sets with infectious diseases application. Journal of King Saud University- Computer and Information Sciences, 34(8), 5968–5978. https://doi.org/10.1016/j.jksuci.2021.08.010
  • Kumar, K. & Chen, S.M. (2023). Group decision making based on entropy measure of Pythagorean fuzzy sets and Pythagorean fuzzy weighted arithmetic mean aggregation operator of Pythagorean fuzzy numbers. Information Sciences, 624, 361–377. https://doi.org/10.1016/j.ins.2022.12.064
  • Olgun, M. & Ünver, M., Yardımcı, Ş. (2019). Pythagorean fuzzy topological spaces. Complex and Intelligent Systems, 5, 177–183. https://doi.org/10.1007/s40747-019-0095-2
  • Hussain, A., Mahmood, T. & Ali, M.I. (2019). Rough Pythagorean fuzzy ideals in semigroups. Computational and Applied Mathematics, 38 (67). https://doi.org/10.1007/s40314-019-0824-6
  • Bhunia, S., Ghorai, G. & Xin, Q. (2021). On the characterization of Pythagorean fuzzy subgroups. AIMS Mathematics, 6(1), 962–978. https://doi.org/10.3934/math.2021058
  • Bhunia, S., Ghorai, G., Xin, Q. & Gulzar, M. (2022). On the algebraic attributes of (α,β)-Pythagorean fuzzy subrings and (α,β)-Pythagorean fuzzy ideals of rings, IEEE Access, 10, 11048–11056. https://doi.org/10.1109/ACCESS.2022.3145376
  • Razaq, A., Alhamzi, G., Razzaque, A. & Garg, H. (2022). A Comprehensive Study on Pythagorean fuzzy Normal Subgroups and Pythagorean fuzzy Isomorphisms. Symmetry, 14, 2084. https://doi.org/10.3390/sym14102084
  • Razaq, A. & Alhamzi, G. (2023). On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 8(2), 4280–4303. https://doi.org/10.3934/math.2023213
  • Adak, A.K. & Kumar, D. (2022). Some Properties of Pythagorean Fuzzy Ideals of Γ-Near-Rings. Palestine Journal of Mathematics, 11(4), 336–346.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Araştırma Makaleleri
Yazarlar

Filiz Çıtak 0000-0003-1784-1845

Yayımlanma Tarihi 29 Haziran 2025
Gönderilme Tarihi 30 Temmuz 2024
Kabul Tarihi 20 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Çıtak, F. (2025). Some Algebraic Properties of Pythagorean Fuzzy Bi-ideals. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 42-59. https://doi.org/10.33484/sinopfbd.1524118


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.