Detection of Microplastics in the Erzurum Plain
Yıl 2025,
Cilt: 10 Sayı: 1, 89 - 99, 29.06.2025
Hiranur Aydın
,
Pınar Özer
,
Simay Aldağ
,
Şeymanur Çobanoğlu
,
Ayşenur Yazıcı
Öz
In this study, microplastic accumulation in soil and water samples collected from Erzurum Plain was investigated. The sizes and morphologies of the detected microplastics were analyzed using light microscopy, while their detailed characterizations were performed with scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that microplastics ranging in size from 1 mm to 10 mm were composed of various polymers including styrene butadiene, microcrystalline waxes, high-density polyethylene, acrylonitrile butadiene styrene and polypropylene. These findings are significant since they represent the first report to highlight microplastic pollution in the Erzurum Plain.
Proje Numarası
TUBİTAK 2209A-Lisans Öğrenci Projesi
Kaynakça
-
Yurtsever, M. (2015). Mikroplastikler’e genel bir bakış. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 17(50), 68-83.
-
Yang, Y., Liu, W., Zhang, Z., Grossart, H.-P., & Gadd, G. M. (2020). Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology, 104, 6501-6511. https://doi.org/10.1007/s00253-020-10704-x
-
Zhang, X., Li, Y., Ouyang, D., Lei, J., Tan, Q., Xie, L., Li, Z., Liu, T., Xiao, Y., & Farooq, T. H. (2021). Systematical review of interactions between microplastics and microorganisms in the soil environment. Journal of Hazardous Materials, 418, 126288. https://doi.org/10.1016/j.jhazmat.2021.126288
-
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 54(7), 3740-3751. https://pubs.acs.org/doi/10.1021/acs.est.9b04535.
-
Rubol, S., Manzoni, S., Bellin, A., & Porporato, A. (2013). Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA). Advances in Water Resources, 62, 106–124. https://doi.org/10.1016/j.advwatres.2013.09.016
-
Yao, X., Luo, X.-S., Fan, J., Zhang, T., Li, H., & Wei, Y. (2022). Ecological and human health risks of atmospheric microplastics (MPs): a review. Environmental Science: Atmospheres, 2(5), 921–942. https://doi.org/10.1039/D2EA00041E
-
Aves, A. R., Revell, L. E., Gaw, S., Ruffell, H., Schuddeboom, A., Wotherspoon, N. E., LaRue, M., & McDonald, A. J. (2022). First evidence of microplastics in Antarctic snow. The Cryosphere, 16(6), 2127–2145. https://doi.org/10.5194/tc-16-2127-2022
-
Li, R., Tao, J., Huang, D., Zhou, W., Gao, L., Wang, X., Chen, H., & Huang, H. (2023). Investigating the effects of biodegradable microplastics and copper ions on probiotic (Bacillus amyloliquefaciens): Toxicity and application. Journal of Hazardous Materials, 443, 130081. https://doi.org/10.1016/j.jhazmat.2022.130081
-
Fu, Z., & Wang, J. (2019). Current practices and future perspectives of microplastic pollution infreshwater ecosystems in China. Science of the Total Environment, 691, 697–712. https://doi.org/10.1016/j.scitotenv.2019.07.167
-
Lusher, A. L., Brate, I. L. N., Munno, K., Hurley, R. R., & Welden, N. A. (2020). Is it or isn’t it:the importance of visual classification in microplastic characterization. Applied Spectroscopy, 74(9),1139–1153. https://doi.org/10.1177/0003702820930733
-
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplasticsin freshwater and terrestrial environments: Evaluating the current understanding to identifythe knowledge gaps and future research priorities. Science of The Total Environment, 586, 127-141.https://doi.org/10.1016/j.scitotenv.2017.01.190
-
Li, H., Lu, X., Wang, S., Zheng, B., & Xu, Y. (2021). Vertical migration of microplasticsalong soil profile under different crop root systems. Environmental Pollution, 278, 116833. https://doi.org/10.1016/j.envpol.2021.116833
-
Raza, M., & Lee, J. Y. (2019). Factors affecting spatial pattern of ground water hydrochemical variables and nitrate in agricultural region of Korea. Episodes Journal ofInternational Geoscience, 42(2), 135-148. https://doi.org/10.18814/epiiugs/2019/019011
-
Kumar, R., & Sharma, P. (2021). Recent developments in extraction, identification,and quantification of microplastics from agricultural soil and groundwater. Fate and Transport of Subsurface Pollutants, 24, 125–14. https://doi.org/10.1007/978-981-15-6564-9_7
-
Allé, P. H., Garcia-Muñoz, P., Adouby, K., Keller, N., & Robert, D. (2021). Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO 2/β-SiC alveolar foams. Environmental Chemistry Letters, 19, 1803–1808. https://doi.org/10.1007/s10311-020-01099-2
-
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). Are view of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 54(7), 3740-3751. https://doi.org/10.1021/acs.est.9b04535
-
Liebmann, B., Köppel, S., Königshofer, P., Bucsics, T., Reiberger, T., & Schwabl, P. (2018). Assessment of microplastic concentrations in human stool: Final results of aprospective study. Conference on Nano and Microplastics in Technical and Freshwater Systems, 2018, 28-31. https://doi.org/10.13140/RG.2.2.16638.02884
-
Ragusa, A., Matta, M., Cristiano, L., Matassa, R., Battaglione, E., Svelato, A., De Luca, C., D’Avino, S., Gulotta, A., Rongioletti, M. C. A., Catalano, P., Santacroce, C., Notarstefano, V., Carnevali, O., Giorgini, E., Vizza, E., Familiari, G., & Nottola, S. A. (2022). Deeply in plasticenta: presence of microplastics in the intracellular compartment of human placentas. International Journal of Environmental Research and Public Health, 19(18), 11593. https://doi.org/10.3390/ijerph191811593
-
Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani F., Ryan P.G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillionplastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
-
Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: a micro issue? Environmental Science & Technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423
-
Sun, Y., & Wang, J. (2022). How microplastics and nanoplastics shape antibiotic resistance. Water Emerging Contaminants Nanoplastics, 1, 8. http://dx.doi.org/10.20517/wecn.2022.09
-
Besseling, E., Wegner, A., Foekema, E. M., Van Den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593–600. https://doi.org/10.1021/es302763x
-
Sridharan, S., Kumar, M., Saha, M., Kirkham, M. B., Singh, L., & Bolan, N. S. (2022). The polymers and their additives in particulate plastics: what makes them hazardous to the fauna? Science of the Total Environment, 824, 153828. https://doi.org/10.1016/j.scitotenv.2022.153828
-
Accinelli, C., Abbas, H. K., Bruno, V., Nissen, L., Vicari, A., Bellaloui, N., Little, N. S., & Shier, W. T. (2020). Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Management, 113, 312–318. https://doi.org/10.1016/j.wasman.2020.06.011
-
Parsaeimehr, A., Miller, C. M., & Ozbay, G. (2023). Microplastics and their interactions with microbiota. Heliyon, 9(4). https://doi.org/10.1016/j.envpol.2020.114425
-
Zhang, T., Jiang, B., Xing, Y., Ya, H., Lv, M., & Wang, X. (2022). Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. Environmental Science and Pollution Research, 29, 1–30. https://doi.org/10.1007/s11356-022-18504-8
-
Guschina, I. A., Hayes, A. J., & Ormerod, S. J. (2020). Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae. Environmental Pollution, 263, 114425. https://doi.org/10.1016/j.envpol.2020.114425
-
Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x
-
Çakmak, Ö., & Acaröz, U. (2021). Su kaynaklarında mikroplastiklerin varlığı ve insan sağlığı açısından önemi. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12(2), 79-88.
-
Raddadi, N., & Fava, F. (2019). Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 679, 148–158. https://doi.org/10.1016/j.scitotenv.2019.04.419
-
Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 21(3), 1787–1810. https://doi.org/10.1007/s10311-022-01552-4
-
Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19), e01095- https://doi.org/10.1128/AEM.01095-1919.
Erzurum Ovasındaki Mikroplastiklerin Tespit Edilmesi
Yıl 2025,
Cilt: 10 Sayı: 1, 89 - 99, 29.06.2025
Hiranur Aydın
,
Pınar Özer
,
Simay Aldağ
,
Şeymanur Çobanoğlu
,
Ayşenur Yazıcı
Öz
Bu çalışmada, Erzurum Ovasından toplanan toprak ve su örneklerinde mikroplastik birikimi araştırılmıştır. Tespit edilen mikroplastiklerin boyutları ve morfolojileri ışık mikroskobu ile, karakterizasyonları ise taramalı elektron mikroskobu (SEM) ve Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR) teknikleri ile belirlenmiştir. Sonuçlarda, boyutları 1 mm ile 10 mm arasında değişen mikroplastiklerin stiren bütadien, mikrokristal mumlar, yüksek yoğunluklu polietilen, akrilonirtil butadiedn stiren ve polipropilen gibi polimerlerden oluştuğu görüldü. Bu sonuçlar, Erzurum Ovasında mikroplastik kirliliğine dikkat çeken ilk rapor olma özelliği açısından önemlidir.
Destekleyen Kurum
TUBİTAK
Proje Numarası
TUBİTAK 2209A-Lisans Öğrenci Projesi
Teşekkür
Bu çalışma Hiranur Aydın’ın yürütücülüğünde ve Ayşenur Yazıcı’nın danışmanlığında yapılan TÜBİTAK 2209-A Projesi kapsamında desteklenmiştir.
Kaynakça
-
Yurtsever, M. (2015). Mikroplastikler’e genel bir bakış. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 17(50), 68-83.
-
Yang, Y., Liu, W., Zhang, Z., Grossart, H.-P., & Gadd, G. M. (2020). Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology, 104, 6501-6511. https://doi.org/10.1007/s00253-020-10704-x
-
Zhang, X., Li, Y., Ouyang, D., Lei, J., Tan, Q., Xie, L., Li, Z., Liu, T., Xiao, Y., & Farooq, T. H. (2021). Systematical review of interactions between microplastics and microorganisms in the soil environment. Journal of Hazardous Materials, 418, 126288. https://doi.org/10.1016/j.jhazmat.2021.126288
-
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 54(7), 3740-3751. https://pubs.acs.org/doi/10.1021/acs.est.9b04535.
-
Rubol, S., Manzoni, S., Bellin, A., & Porporato, A. (2013). Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA). Advances in Water Resources, 62, 106–124. https://doi.org/10.1016/j.advwatres.2013.09.016
-
Yao, X., Luo, X.-S., Fan, J., Zhang, T., Li, H., & Wei, Y. (2022). Ecological and human health risks of atmospheric microplastics (MPs): a review. Environmental Science: Atmospheres, 2(5), 921–942. https://doi.org/10.1039/D2EA00041E
-
Aves, A. R., Revell, L. E., Gaw, S., Ruffell, H., Schuddeboom, A., Wotherspoon, N. E., LaRue, M., & McDonald, A. J. (2022). First evidence of microplastics in Antarctic snow. The Cryosphere, 16(6), 2127–2145. https://doi.org/10.5194/tc-16-2127-2022
-
Li, R., Tao, J., Huang, D., Zhou, W., Gao, L., Wang, X., Chen, H., & Huang, H. (2023). Investigating the effects of biodegradable microplastics and copper ions on probiotic (Bacillus amyloliquefaciens): Toxicity and application. Journal of Hazardous Materials, 443, 130081. https://doi.org/10.1016/j.jhazmat.2022.130081
-
Fu, Z., & Wang, J. (2019). Current practices and future perspectives of microplastic pollution infreshwater ecosystems in China. Science of the Total Environment, 691, 697–712. https://doi.org/10.1016/j.scitotenv.2019.07.167
-
Lusher, A. L., Brate, I. L. N., Munno, K., Hurley, R. R., & Welden, N. A. (2020). Is it or isn’t it:the importance of visual classification in microplastic characterization. Applied Spectroscopy, 74(9),1139–1153. https://doi.org/10.1177/0003702820930733
-
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplasticsin freshwater and terrestrial environments: Evaluating the current understanding to identifythe knowledge gaps and future research priorities. Science of The Total Environment, 586, 127-141.https://doi.org/10.1016/j.scitotenv.2017.01.190
-
Li, H., Lu, X., Wang, S., Zheng, B., & Xu, Y. (2021). Vertical migration of microplasticsalong soil profile under different crop root systems. Environmental Pollution, 278, 116833. https://doi.org/10.1016/j.envpol.2021.116833
-
Raza, M., & Lee, J. Y. (2019). Factors affecting spatial pattern of ground water hydrochemical variables and nitrate in agricultural region of Korea. Episodes Journal ofInternational Geoscience, 42(2), 135-148. https://doi.org/10.18814/epiiugs/2019/019011
-
Kumar, R., & Sharma, P. (2021). Recent developments in extraction, identification,and quantification of microplastics from agricultural soil and groundwater. Fate and Transport of Subsurface Pollutants, 24, 125–14. https://doi.org/10.1007/978-981-15-6564-9_7
-
Allé, P. H., Garcia-Muñoz, P., Adouby, K., Keller, N., & Robert, D. (2021). Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO 2/β-SiC alveolar foams. Environmental Chemistry Letters, 19, 1803–1808. https://doi.org/10.1007/s10311-020-01099-2
-
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). Are view of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 54(7), 3740-3751. https://doi.org/10.1021/acs.est.9b04535
-
Liebmann, B., Köppel, S., Königshofer, P., Bucsics, T., Reiberger, T., & Schwabl, P. (2018). Assessment of microplastic concentrations in human stool: Final results of aprospective study. Conference on Nano and Microplastics in Technical and Freshwater Systems, 2018, 28-31. https://doi.org/10.13140/RG.2.2.16638.02884
-
Ragusa, A., Matta, M., Cristiano, L., Matassa, R., Battaglione, E., Svelato, A., De Luca, C., D’Avino, S., Gulotta, A., Rongioletti, M. C. A., Catalano, P., Santacroce, C., Notarstefano, V., Carnevali, O., Giorgini, E., Vizza, E., Familiari, G., & Nottola, S. A. (2022). Deeply in plasticenta: presence of microplastics in the intracellular compartment of human placentas. International Journal of Environmental Research and Public Health, 19(18), 11593. https://doi.org/10.3390/ijerph191811593
-
Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani F., Ryan P.G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillionplastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
-
Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: a micro issue? Environmental Science & Technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423
-
Sun, Y., & Wang, J. (2022). How microplastics and nanoplastics shape antibiotic resistance. Water Emerging Contaminants Nanoplastics, 1, 8. http://dx.doi.org/10.20517/wecn.2022.09
-
Besseling, E., Wegner, A., Foekema, E. M., Van Den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593–600. https://doi.org/10.1021/es302763x
-
Sridharan, S., Kumar, M., Saha, M., Kirkham, M. B., Singh, L., & Bolan, N. S. (2022). The polymers and their additives in particulate plastics: what makes them hazardous to the fauna? Science of the Total Environment, 824, 153828. https://doi.org/10.1016/j.scitotenv.2022.153828
-
Accinelli, C., Abbas, H. K., Bruno, V., Nissen, L., Vicari, A., Bellaloui, N., Little, N. S., & Shier, W. T. (2020). Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Management, 113, 312–318. https://doi.org/10.1016/j.wasman.2020.06.011
-
Parsaeimehr, A., Miller, C. M., & Ozbay, G. (2023). Microplastics and their interactions with microbiota. Heliyon, 9(4). https://doi.org/10.1016/j.envpol.2020.114425
-
Zhang, T., Jiang, B., Xing, Y., Ya, H., Lv, M., & Wang, X. (2022). Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. Environmental Science and Pollution Research, 29, 1–30. https://doi.org/10.1007/s11356-022-18504-8
-
Guschina, I. A., Hayes, A. J., & Ormerod, S. J. (2020). Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae. Environmental Pollution, 263, 114425. https://doi.org/10.1016/j.envpol.2020.114425
-
Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x
-
Çakmak, Ö., & Acaröz, U. (2021). Su kaynaklarında mikroplastiklerin varlığı ve insan sağlığı açısından önemi. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12(2), 79-88.
-
Raddadi, N., & Fava, F. (2019). Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 679, 148–158. https://doi.org/10.1016/j.scitotenv.2019.04.419
-
Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 21(3), 1787–1810. https://doi.org/10.1007/s10311-022-01552-4
-
Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19), e01095- https://doi.org/10.1128/AEM.01095-1919.