Optimization of Smithsonite Ore Solubility with Lactic Acid Leaching Reagent
Yıl 2025,
Cilt: 10 Sayı: 2, 325 - 339, 24.12.2025
Elif Şahin
,
Fatih Demir
,
Ömer Laçin
,
Fatih Sevim
Öz
In this study, optimum parameters for leaching performance of lactic acid reagent in smithsonite ore were determined using L16 (45) experimental plan in the Taguchi Statistical Method. Since maximum smithsonite ore extraction was desired for the result, Taguchi's 'bigger is better' performance formula was used. In the experiments; parameters affecting dissolution such as temperature, reaction time, particle size, acid concentration and solid/liquid ratio were investigated. When ANOVA analysis was applied to the parameters, it was determined that the most effective parameters according to F values were acid concentration, solid/liquid ratio and particle size, respectively. In addition, it was observed that zinc conversion increased with increasing temperature and decreasing solid/liquid ratio and particle size. The parameter levels that maximized the S/N value were determined to be 30ºC temperature, 0.01 g.mL-1 solid/liquid ratio, 1 M lactic acid concentration,-160.5 µm particle size and 20 min reaction time. Under these conditions, it was found that smithsonite ore was dissolved by 98.85%.
Etik Beyan
Çalışma, etik kurul izni ve herhangi bir özel izin gerektirmemektedir.
Destekleyen Kurum
Herhangi bir kurum ve/veya kuruluş tarafından desteklenmemiştir.
Kaynakça
-
Baba, A. A., Ghosh, M. K., Pradhan, S. R., Rao, D. S., Baral, A., & Adekola, F. A. (2014). Characterization and kinetic study on ammonia leaching of complex copper ore. Transactions of Nonferrous Metals Society of China, 24(5), 1587-1595. https://doi.org/10.1016/S1003-6326(14)63229-5
-
Marković, B., Sokić, M., Kamberović, Ž., Živković, D., & Manojlović, V. (2015). Investigation of copper (I) sulphide leaching in oxidative hydrochloric acid solution. Metallurgical and Materials Engineering, 21(4), 253-258. https://doi.org/10.63278/10.63278/mme.v31.1
-
Bhargava, S. K., Pownceby, M. I., & Ram R. (2016). Hydrometallurgy. Metals, 6(5), 17-19. https://doi.org/10.3390/met6050122
-
Khalil, A., Ait-Khouia, Y., Beniddar, H., El Ghorfi, M., Hakkou, R., Taha, Y., & Benzaazoua, M. (2025). Sustainable reprocessing of Pb–Zn mine tailings through froth flotation for resource recovery and environmental remediation in abandoned mining regions. Minerals Engineering, 222, 109132. https://doi.org/10.1016/j.mineng.2024.109132
-
Hurşit, M., Laçin, O., & Saraç, H. (2009). Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 6-12. https://doi.org/10.1016/j.jtice.2008.07.003
-
Laçin, O., Dönmez, B., & Eti, F. E. (2018). Investigation of leaching kinetics of smithsonite ore. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(1), 205-212. https://doi.org/10.30492/ijcce.2018.31981
-
Kumas, C., & Obut, A. (2021). Effect of heating on structure and leaching characteristics of a zinc carbonate ore. Physicochemical Problems of Mineral Processing, 57(5), 23-32. https://doi.org/10.37190/ppmp/140096
-
Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing, 49(2), 547-555. https://doi.org/10.5277/ppmp130215
-
Hao, L. A. I., Deng, J. S., Liu, Z. L., Wen, S. M., & Huang, L. Y. (2020). Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods. Transactions of Nonferrous Metals Society of China, 30(5), 1364-1374. https://doi.org/10.1016/S1003-6326(20)65302-X
-
Bai, S., Yu, P., Ding, Z., Li, C., Xian, Y., & Wen, S. (2020). Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies. Minerals Engineering, 146, 106115. https://doi.org/10.1007/s12613-023-2650-5
-
Moghaddam, J., Sarraf-Mamoory, R., Yamini, Y., & Abdollahy, M. (2005). Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media. Industrial and Engineering Chemistry Research, 44(24), 8952-8958. https://doi.org/10.1021/ie050479+
-
Chen, H., Wu, D., & Wang, Z. (2024). Investigation of the leaching kinetics of zinc from smithsonite in ammonium citrate solution. Metals, 14(5), 519. https://doi.org/10.3390/met14050519
-
Li, S., Zhang, Y., Zhang, L., Tang, A., Lv, X., Zhao, Y., & Qiu, G. (2021). Effects of mechanical activation on the bioleaching of sphalerite and marmatite for Zn extraction. Minerals, 11(2), 111. https://doi.org/10.3390/min11020111
-
Bayrak, B., Laçin, O., Bakan, F., & Saraç, H. (2006). Investigation of dissolution kinetics of natural magnesite in gluconic acid solutions. Chemical Engineering Journal, 117(2), 109-115. https://doi.org/10.1016/j.cej.2005.12.020
-
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in food Science & Technology, 30(1), 70-83. https://doi.org/10.1016/j.tifs.2012.11.007
-
Zia, H., Awais, M., Masood, H. M., & Ali, N. (2024). Investigating the impacts of various parameters on lactic acid production; A Review. Korean Chemical Engineering Research, 62(4), 281-295. https://doi.org/10.9713/kcer.2024.62.4.281
-
Cao, X., Lee, H. J., Yun, H. S., & Koo, Y. M. (2001). Solubilities of calcium and zinc lactate in water and water-ethanol mixture. Korean Journal of Chemical Engineering, 18(1), 133-135. https://doi.org/10.1007/BF02707210
-
Kalinowska-Lis, U. (2025). Overview of active ingredients used in deodorants and antiperspirants available on EU market. Applied Sciences, 15(9), 5068. https://doi.org/10.3390/app15095068
-
Kavcı, E. (2022). Ucuz bir adsorbent ile metil mavisinin giderimi: optimizasyon, ANOVA analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 7(1), 71-80. https://doi.org/10.33484/sinopfbd.1098225
-
Tanaydın, M. K., Bakıcı Tanaydın, Z., & Demirkıran, N. (2021). Determination of optimum process conditions by central composite design method and examination of leaching kinetics of smithsonite ore using nitric acid solution. Journal of Sustainable Metallurgy, 7, 178-191. https://doi.org/10.1007/s40831-020-00333-z
-
Elizalde-González, M. P., & García-Díaz, L. E. (2010). Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 163(1-2), 55-61. https://doi.org/10.1016/j.cej.2010.07.040
-
Moghaddam, J., Sarraf-Mamoory, R., Abdollahy, M., & Yamini, Y. (2006). Purification of zinc ammoniacal leaching solution by cementation: determination of optimum process conditions with experimental design by Taguchi's method. Separation and Purification Technology, 51(2), 157-164. https://doi.org/10.1016/j.seppur.2006.01.012
-
Akhgar, B. N., Pazouki, M., Ranjbar, M., Hosseinnia, A., & Salarian, R. (2012). Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate. Chemical Engineering Research and Design, 90(2), 220-228. https://doi.org/10.1016/j.cherd.2011.07.008
-
Chen, H. J., Chang, S. N., & Tang, C. W. (2017). Application of the Taguchi method for optimizing the process parameters of producing lightweight aggregates by incorporating tile grinding sludge with reservoir sediments. Materials, 10(11), 1294. https://doi.org/10.3390/ma10111294
-
Aral, S., & Beşe, A. V. (2024). Multi-objective optimization of the recovery of base and precious metals from waste printed circuit boards by two-stage hydrometallurgical process using taguchi-based grey relationship analysis. Journal of Sustainable Metallurgy, 10, 1-17. https://doi.org/10.1007/s40831-024-00850-1
-
Kizilca, M., & Copur, M. (2017). An optimization study on dissolution of the calcined colemanite mineral in methyl alcohol by CO2 in an autoclave system using Taguchi method. PressAcademia Procedia, 5(1), 198-204. https://doi.org/10.17261/Pressacademia.2017.590
-
Furmann, N. H., (1963). Standard Methods of Chemical Analysis, 6th ed. D. Van Nastrand, New Jersey.
-
Orozco-Mena, R. E., Torres-Armendariz, N. L., Salmerón, I., Piñón-Muñiz, M., Espinoza-Hicks, J. C., Chavez-Flores, D., & Ramos-Sánchez, V. H. (2025). Fermentative lactic acid production from Sotol bagasse (Dasylirion spp.): Optimization of microwave-assisted biomass pre-treatment. Waste Management, 201, 114778. https://doi.org/10.1016/j.wasman.2025.114778
-
Ilhan, S. S., Demir, F., Lacin, O., & Sevim, F. (2023). Zinc leaching from smithsonite ore in lactic acid solution: Studies on parametric optimization, kinetic and mechanism. Bulletin of the Chemical Society of Ethiopia, 37(3), 735-744. https://doi.org/10.4314/bcse.v37i3.15
-
Demir, F., & Dönmez, B. (2008). Optimization of the dissolution of magnesite in citric acid solutions. International Journal of Mineral Processing, 87(1-2), 60-64. https://doi.org/10.1016/j.minpro.2008.01.006
-
Roy, Ranjit K. (2010). A Primer on The Taguchi Method, Second Edition. Van Nostrand Reinhold, New York, USA.
-
Çopur, M., Karagöz, Ö., & Kocakerim, M. M. (2017). Determination of optimal conditions for retention of sulfur dioxide by waste ulexite ore in an aqueous medium. Chemical Engineering Communications, 204(8), 907-915. https://doi.org/10.1080/00986445.2017.1326105
-
Behnajady, B., Balesini, A. A., & Moghaddam, J. (2014). A new approach to the optimisation of zinc electrolyte cold purification process by Taguchi’s method. Canadian Metallurgical Quarterly, 53(3), 333-339. https://doi.org/10.1179/1879139513Y.0000000107
-
Hsieh, K. L., Tong, L. I., Chiu, H. P., & Yeh, H. Y. (2005). Optimization of a multi-response problem in Taguchi's dynamic system. Computers & Industrial Engineering, 49(4), 556-571. https://doi.org/10.1016/j.cie.2005.08.002
Laktik Asit Liç Reaktifi ile Smithsonit Cevherinin Çözünürlüğünün Optimizasyonu
Yıl 2025,
Cilt: 10 Sayı: 2, 325 - 339, 24.12.2025
Elif Şahin
,
Fatih Demir
,
Ömer Laçin
,
Fatih Sevim
Öz
Bu çalışmada, laktik asit reaktifinin smithsonit cevherindeki liç performansı için optimum parametreler Taguchi İstatistiksel Yönteminde L16 (45) deney planı kullanılarak belirlenmiştir. Sonuç için maksimum smithsonite cevheri ekstraksiyonu istendiğinden Taguchi'nin 'büyük daha iyidir' performans formülü kullanılmıştır. Deneylerde; sıcaklık, reaksiyon süresi, partikül boyutu, asit konsantrasyonu ve katı/sıvı oranı gibi çözünmeyi etkileyen parametreler incelenmiştir. Parametrelere ANOVA analizi uygulandığında, F değerlerine göre en etkili parametrelerin sırasıyla asit konsantrasyonu, katı/sıvı oranı ve partikül boyutu olduğu belirlenmiştir. Ayrıca, çinko dönüşümünün artan sıcaklık ve azalan katı/sıvı oranı ve partikül boyutu ile arttığı gözlemlenmiştir. S/N değerini maksimize eden parametre seviyeleri 30ºC sıcaklık, 0,01 g.mL-1 katı/sıvı oranı, 1 M laktik asit konsantrasyonu, -160.5 µm partikül boyutu ve 20 dk reaksiyon süresi olarak belirlenmiştir. Bu koşullar altında, smithsonite cevherinin %98.85 oranında çözündüğü bulunmuştur.
Etik Beyan
Çalışma, etik kurul izni ve herhangi bir özel izin gerektirmemektedir.
Destekleyen Kurum
Herhangi bir kurum ve/veya kuruluş tarafından desteklenmemiştir
Kaynakça
-
Baba, A. A., Ghosh, M. K., Pradhan, S. R., Rao, D. S., Baral, A., & Adekola, F. A. (2014). Characterization and kinetic study on ammonia leaching of complex copper ore. Transactions of Nonferrous Metals Society of China, 24(5), 1587-1595. https://doi.org/10.1016/S1003-6326(14)63229-5
-
Marković, B., Sokić, M., Kamberović, Ž., Živković, D., & Manojlović, V. (2015). Investigation of copper (I) sulphide leaching in oxidative hydrochloric acid solution. Metallurgical and Materials Engineering, 21(4), 253-258. https://doi.org/10.63278/10.63278/mme.v31.1
-
Bhargava, S. K., Pownceby, M. I., & Ram R. (2016). Hydrometallurgy. Metals, 6(5), 17-19. https://doi.org/10.3390/met6050122
-
Khalil, A., Ait-Khouia, Y., Beniddar, H., El Ghorfi, M., Hakkou, R., Taha, Y., & Benzaazoua, M. (2025). Sustainable reprocessing of Pb–Zn mine tailings through froth flotation for resource recovery and environmental remediation in abandoned mining regions. Minerals Engineering, 222, 109132. https://doi.org/10.1016/j.mineng.2024.109132
-
Hurşit, M., Laçin, O., & Saraç, H. (2009). Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 6-12. https://doi.org/10.1016/j.jtice.2008.07.003
-
Laçin, O., Dönmez, B., & Eti, F. E. (2018). Investigation of leaching kinetics of smithsonite ore. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(1), 205-212. https://doi.org/10.30492/ijcce.2018.31981
-
Kumas, C., & Obut, A. (2021). Effect of heating on structure and leaching characteristics of a zinc carbonate ore. Physicochemical Problems of Mineral Processing, 57(5), 23-32. https://doi.org/10.37190/ppmp/140096
-
Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing, 49(2), 547-555. https://doi.org/10.5277/ppmp130215
-
Hao, L. A. I., Deng, J. S., Liu, Z. L., Wen, S. M., & Huang, L. Y. (2020). Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods. Transactions of Nonferrous Metals Society of China, 30(5), 1364-1374. https://doi.org/10.1016/S1003-6326(20)65302-X
-
Bai, S., Yu, P., Ding, Z., Li, C., Xian, Y., & Wen, S. (2020). Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies. Minerals Engineering, 146, 106115. https://doi.org/10.1007/s12613-023-2650-5
-
Moghaddam, J., Sarraf-Mamoory, R., Yamini, Y., & Abdollahy, M. (2005). Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media. Industrial and Engineering Chemistry Research, 44(24), 8952-8958. https://doi.org/10.1021/ie050479+
-
Chen, H., Wu, D., & Wang, Z. (2024). Investigation of the leaching kinetics of zinc from smithsonite in ammonium citrate solution. Metals, 14(5), 519. https://doi.org/10.3390/met14050519
-
Li, S., Zhang, Y., Zhang, L., Tang, A., Lv, X., Zhao, Y., & Qiu, G. (2021). Effects of mechanical activation on the bioleaching of sphalerite and marmatite for Zn extraction. Minerals, 11(2), 111. https://doi.org/10.3390/min11020111
-
Bayrak, B., Laçin, O., Bakan, F., & Saraç, H. (2006). Investigation of dissolution kinetics of natural magnesite in gluconic acid solutions. Chemical Engineering Journal, 117(2), 109-115. https://doi.org/10.1016/j.cej.2005.12.020
-
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in food Science & Technology, 30(1), 70-83. https://doi.org/10.1016/j.tifs.2012.11.007
-
Zia, H., Awais, M., Masood, H. M., & Ali, N. (2024). Investigating the impacts of various parameters on lactic acid production; A Review. Korean Chemical Engineering Research, 62(4), 281-295. https://doi.org/10.9713/kcer.2024.62.4.281
-
Cao, X., Lee, H. J., Yun, H. S., & Koo, Y. M. (2001). Solubilities of calcium and zinc lactate in water and water-ethanol mixture. Korean Journal of Chemical Engineering, 18(1), 133-135. https://doi.org/10.1007/BF02707210
-
Kalinowska-Lis, U. (2025). Overview of active ingredients used in deodorants and antiperspirants available on EU market. Applied Sciences, 15(9), 5068. https://doi.org/10.3390/app15095068
-
Kavcı, E. (2022). Ucuz bir adsorbent ile metil mavisinin giderimi: optimizasyon, ANOVA analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 7(1), 71-80. https://doi.org/10.33484/sinopfbd.1098225
-
Tanaydın, M. K., Bakıcı Tanaydın, Z., & Demirkıran, N. (2021). Determination of optimum process conditions by central composite design method and examination of leaching kinetics of smithsonite ore using nitric acid solution. Journal of Sustainable Metallurgy, 7, 178-191. https://doi.org/10.1007/s40831-020-00333-z
-
Elizalde-González, M. P., & García-Díaz, L. E. (2010). Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 163(1-2), 55-61. https://doi.org/10.1016/j.cej.2010.07.040
-
Moghaddam, J., Sarraf-Mamoory, R., Abdollahy, M., & Yamini, Y. (2006). Purification of zinc ammoniacal leaching solution by cementation: determination of optimum process conditions with experimental design by Taguchi's method. Separation and Purification Technology, 51(2), 157-164. https://doi.org/10.1016/j.seppur.2006.01.012
-
Akhgar, B. N., Pazouki, M., Ranjbar, M., Hosseinnia, A., & Salarian, R. (2012). Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate. Chemical Engineering Research and Design, 90(2), 220-228. https://doi.org/10.1016/j.cherd.2011.07.008
-
Chen, H. J., Chang, S. N., & Tang, C. W. (2017). Application of the Taguchi method for optimizing the process parameters of producing lightweight aggregates by incorporating tile grinding sludge with reservoir sediments. Materials, 10(11), 1294. https://doi.org/10.3390/ma10111294
-
Aral, S., & Beşe, A. V. (2024). Multi-objective optimization of the recovery of base and precious metals from waste printed circuit boards by two-stage hydrometallurgical process using taguchi-based grey relationship analysis. Journal of Sustainable Metallurgy, 10, 1-17. https://doi.org/10.1007/s40831-024-00850-1
-
Kizilca, M., & Copur, M. (2017). An optimization study on dissolution of the calcined colemanite mineral in methyl alcohol by CO2 in an autoclave system using Taguchi method. PressAcademia Procedia, 5(1), 198-204. https://doi.org/10.17261/Pressacademia.2017.590
-
Furmann, N. H., (1963). Standard Methods of Chemical Analysis, 6th ed. D. Van Nastrand, New Jersey.
-
Orozco-Mena, R. E., Torres-Armendariz, N. L., Salmerón, I., Piñón-Muñiz, M., Espinoza-Hicks, J. C., Chavez-Flores, D., & Ramos-Sánchez, V. H. (2025). Fermentative lactic acid production from Sotol bagasse (Dasylirion spp.): Optimization of microwave-assisted biomass pre-treatment. Waste Management, 201, 114778. https://doi.org/10.1016/j.wasman.2025.114778
-
Ilhan, S. S., Demir, F., Lacin, O., & Sevim, F. (2023). Zinc leaching from smithsonite ore in lactic acid solution: Studies on parametric optimization, kinetic and mechanism. Bulletin of the Chemical Society of Ethiopia, 37(3), 735-744. https://doi.org/10.4314/bcse.v37i3.15
-
Demir, F., & Dönmez, B. (2008). Optimization of the dissolution of magnesite in citric acid solutions. International Journal of Mineral Processing, 87(1-2), 60-64. https://doi.org/10.1016/j.minpro.2008.01.006
-
Roy, Ranjit K. (2010). A Primer on The Taguchi Method, Second Edition. Van Nostrand Reinhold, New York, USA.
-
Çopur, M., Karagöz, Ö., & Kocakerim, M. M. (2017). Determination of optimal conditions for retention of sulfur dioxide by waste ulexite ore in an aqueous medium. Chemical Engineering Communications, 204(8), 907-915. https://doi.org/10.1080/00986445.2017.1326105
-
Behnajady, B., Balesini, A. A., & Moghaddam, J. (2014). A new approach to the optimisation of zinc electrolyte cold purification process by Taguchi’s method. Canadian Metallurgical Quarterly, 53(3), 333-339. https://doi.org/10.1179/1879139513Y.0000000107
-
Hsieh, K. L., Tong, L. I., Chiu, H. P., & Yeh, H. Y. (2005). Optimization of a multi-response problem in Taguchi's dynamic system. Computers & Industrial Engineering, 49(4), 556-571. https://doi.org/10.1016/j.cie.2005.08.002