Apriori Algoritması ile Özellik Seçimi Algoritması Tabanlı Kitap Oylama Analizi
Yıl 2025,
Cilt: 10 Sayı: 2, 474 - 496, 24.12.2025
Merve Köle
,
Emin Borandag
Öz
Dijital sistemler, veri madenciliği amacıyla, okuduğumuz kitapların, satın aldığımız ürünlerin veya beğendiğimiz ürünlerin verilerini kendi çerçeveleri içinde kaydederler. Bu verilerden veri madenciliği yöntemleriyle elde edilecek bilgiler, dijital sistemler için büyük önem taşımaktadır. Veri madenciliği, matematiksel ve istatistiksel tekniklerle verilerdeki gizli ilişkileri ve bilgileri ortaya çıkararak karar alma sürecini hızlandırmayı amaçlamaktadır. Bu bağlamda, bu çalışmada Apriori algoritması kullanılarak kitap oylarını içeren veri kümesine veri madenciliği teknikleri uygulanmıştır. Bu şekilde, veri kümesi içindeki ilişkiler belirlenmiş, kurallar üretilmiş ve üretilen kurallar ile kullanıcı tercihleri arasındaki bağlantılar ortaya çıkarılmıştır. Apriori algoritmasının uygulanmasıyla, beğenilen kitapları diğer kitaplarla ve beğenilen yazarları diğer yazarlarla birlikte gösteren kurallar üretilmiştir. Çalışmanın sonucunda, belirli bir kitabı beğenen bir kişinin hangi diğer kitapları beğenebileceği ve belirli bir yazarı beğenen bir kişinin hangi diğer yazarları beğenebileceği konusunda kurallar geliştirilmiştir. Çalışmada üretilen kuralların, kitap öneri listelerinde ve satış stratejilerinde kullanılması amaçlanmaktadır.
Kaynakça
-
Alaeddinoğlu, M., Aydın, T., & Dal, D. (2014). Birliktelik kurallari ile mekânsal-zamansal veri madenciliği. Erzincan University Journal of Science and Technology, 5(2), 191-212.
-
Xiao, W., Jing, L., Xu, Y., Zheng, S., Gan, Y., & Wen, C. (2021). Different data mining approaches based medical text data. Journal of Healthcare Engineering, 2021(1), 1285167. https://doi.org/10.1155/2021/1285167
-
Pinheiro, L. I. C. C., Pereira, M. L. D., Fernandez, M. P., Filho, F. M. V., de Abreu, W. J. C. P., & Pinheiro, P. G. C. D. (2021). Application of data mining algorithms for dementia in people with HIV/AIDS. Computational and Mathematical Methods in Medicine, 2021(1), 4602465. https://doi.org/10.1155/2021/4602465
-
Hong, J., Tamakloe, R., & Park, D. (2020). Discovering insightful rules among truck crash characteristics using apriori algorithm. Journal of advanced transportation, 2020(1), 4323816. https://doi.org/10.1155/2020/4323816
-
Alan, M. A., & Yeşilyurt, C. (2019). Birliktelik kuralları madenciliği ile yatan hasta profilinin çıkarılması. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 23(4), 1917-1926.
-
Agrawal, R., & Srikant, R. (1994, September 12-15). Fast algorithms for mining association rules [Conference presentation]. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile. https://www.vldb.org/conf/1994/P487.PDF
-
Wu, J., Guo, S., Huang, H., Liu, W., & Xiang, Y. (2018). Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives. IEEE Communications Surveys & Tutorials, 20(3), 2389-2406. https://doi.org/10.1109/COMST.2018.2812301
-
Özçakır, F. C., & Çamurcu, A. Y. (2007). Birliktelik kuralı yöntemi için bir veri madenciliği yazılımı tasarımı ve uygulaması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 6(12), 21-37.
-
Erdem, S., & Özdağoğlu, G. (2008). Ege Bölgesi'ndeki bir araştırma ve uygulama hastanesinin acil hasta verilerinin veri madenciliği ile analiz edilmesi. Anadolu University Journal of Sciences & Technology, 9(2).
-
Ay, D., & Çil, İ. (2010). Migros Türk AŞ. de birliktelik kurallarının yerleşim düzeni planlamada kullanılması. Endüstri Mühendisliği, 21(2), 14-29.
-
Hong, J., Tamakloe, R., & Park, D. (2020). Discovering insightful rules among truck crash characteristics using Apriori algorithm. Journal of Advanced Transportation, 2020(1), 4323816. https://doi.org/10.1155/2020/4323816
-
Erpolat, S. (2012). Otomobil yetkili servislerinde birliktelik kurallarının belirlenmesinde Apriori ve Fp-Growth algoritmalarının karşılaştırılması. Anadolu University Journal of Social Sciences, 12(2), 137–146.
-
Bilgin, T., & Acun, G. (2015). Yazılım hata logları kullanılarak veri madenciliği uygulaması gerçekleştirilmesi. Marmara Journal of Pure and Applied Sciences, 27(1), 14–20. https://doi.org/10.7240/mufbed.83214
-
Doğrul, G., Akay, D., & Kur, M. (2015). Trafik kazalarının birliktelik kuralları ile analizi. Gazi Journal of Engineering Sciences, 1(2), 265–283.
-
Çelik, B., & Aytekin, P. (2019, 1-4 Mayıs). Perakende sektöründe pazar sepeti analizi için Apriori algoritması ile birliktelik kurallarının oluşturulması [Conference presentation]. PPAD Pazarlama Kongresi - MMRA Marketing Congress Bildiri Kitabı, Kuşadası, Türkiye. https://www.researchgate.net/publication/344538987_Perakende_Sektorunde_Pazar_Sepeti_Analizi_icin_Apriori_Algoritmasi_ile_Birliktelik_Kurallarinin_Olusturulmasi
-
Li, Z., Li, X., Tang, R., & Zhang, L. (2021). Apriori algorithm for the data mining of global cyberspace security issues for human participatory based on association rules. Frontiers in Psychology, 11, 582480. https://doi.org/10.3389/fpsyg.2020.582480
-
Wang, H. B., & Gao, Y. J. (2021). Research on parallelization of Apriori algorithm in association rule mining. Procedia Computer Science, 183, 641–647. https://doi.org/10.1016/j.procs.2021.02.109
-
Hussain, S., & Hazarika, G. C. (2014). Educational data mining model using Rattle. International Journal of Advanced Computer Science and Applications, 5(6). https://doi.org/10.14569/IJACSA.2014.050605
-
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD international conference on Management of data, 207-216.
-
Hussain, S. (2017). Survey on current trends and techniques of data mining research. London Journal of Research in Computer Science and Technology, 17(1), 11.
-
Xu, R., & Luo, F. (2021). Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest. Safety Science, 135, 105125. https://doi.org/10.1016/j.ssci.2020.105125
-
Birant, D., Kut, A., Ventura, M., Altınok, H., Altınok, B., Altınok, E., & Ihlamur, M. (2010). İş zekası çözümleri için çok boyutlu birliktelik kuralları analizi. Akademik Bilişim, 10, 256.
-
Akpınar, H. (2000). Veri tabanlarında bilgi keşfi ve veri madenciliği. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 29(1), 1-22.
-
Liu, Y., Hu, X., Luo, X., Zhou, Y., Wang, D., & Farah, S. (2020). Identifying the most significant input parameters for predicting district heating load using an association rule algorithm. Journal of Cleaner Production, 275, 122984. https://doi.org/10.1016/j.jclepro.2020.122984
-
Altay, E. V., & Alataş, B. (2021). Differential evolution and sine cosine algorithm based novel hybrid multi-objective approaches for numerical association rule mining. Information Sciences, 554, 198–221. https://doi.org/10.1016/j.ins.2020.12.055
-
Dong, X., Hao, F., Zhao, L., & Xu, T. (2020). An efficient method for pruning redundant negative and positive association rules. Neurocomputing, 393, 245–258. https://doi.org/10.1016/j.neucom.2018.09.108
-
Fernandez-Basso, C., Ruiz, M. D., & Martin-Bautista, M. J. (2021). Spark solutions for discovering fuzzy association rules in Big Data. International Journal of Approximate Reasoning, 137, 94–112. https://doi.org/10.1016/j.ijar.2021.07.004
-
Ayberkin, D., & Özen, Ü. (2019). Apriori algoritmasının kullanılmasına yönelik bir yazılım tasarımı ve uygulaması: İŞKUR verilerinin değerlendirilmesi üzerine bir örnek çalışma. Journal of Business in the Digital Age, 2(2), 95–102.
-
Han, J., Kamber, M., & Pei, J. (2000). Data mining: Concepts and techniques. Morgan Kaufmann.
-
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.
-
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(1-4), 131-156. https://doi.org/10.3233/IDA-1997-1302
-
High, R., Eyres, G. T., Bremer, P., & Kebede, B. (2021). Characterization of blue cheese volatiles using fingerprinting, self-organizing maps, and entropy-based feature selection. Food Chemistry, 347, 128955. https://doi.org/10.1016/j.foodchem.2020.129011
-
Omuya, E. O., Okeyo, G. O., & Kimwele, M. W. (2021). Feature selection for classification using principal component analysis and information gain. Expert Systems with Applications, 174, 114765. https://doi.org/10.1016/j.eswa.2021.114765
-
Hakim, M. F., & Saputra, S. (2025). Analisis prediksi kelulusan mahasiswa universitas dinamika bangsa menggunakan metode naïve bayes. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 5(1), 1264-1273. https://doi.org/10.33998/jakakom.2025.5.1.1999
-
Novakovic, J., Strbac, P., & Bulatovic, D. (2011). Toward optimal feature selection using ranking methods and classification algorithms. Yugoslav Journal of Operations Research, 21(1), 119–135. https://doi.org/10.2298/YJOR1101119N
-
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–90. https://doi.org/10.1023/A:1022631118932
-
Kaynar, O., Arslan, H., Görmez, Y., & Işık, Y. E. (2018). Makine öğrenmesi ve öznitelik seçim yöntemleriyle saldırı tespiti. Bilişim Teknolojileri Dergisi, 11(2), 175–185. https://doi.org/10.17671/gazibtd.368583
-
Kira, K., & Rendell, L.A. (1992). The Feature Selection Problem: Traditional Methods and a New Algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI Press, Atlanta, 129-134.
-
Kononenko, I. (1994, 2 April). Estimating attributes: Analysis and extensions of RELIEF. [Conference presentation]. European conference on machine learning. Berlin, Heidelberg: Springer https://doi.org/10.1007/3-540-57868-4_57
-
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, 3 May). Improving recommendation lists through topic diversification. Proceedings of the 14th International Conference on World Wide Web). ACM. https://doi.org/10.1145/1060745.1060754
-
Dewson, R. (2014). SQL Server Management Studio. In Beginning SQL Server for Developers: Fourth Edition (pp. 25-42). Berkeley, CA: Apress.
-
Liu, H., & Wang, B. (2007). An association rule mining algorithm based on a Boolean matrix. Data Science Journal, 6, 559-565. https://doi.org/10.2481/dsj.6.S559
-
Bartley, P. (2009). Book tagging on Library Thing: how, why, and what are in the tags? Proceedings of the American Society for Information Science and Technology, 46(1), 1-22. https://doi.org/10.1002/meet.2009.1450460228
Book Rating Analysis Based on Feature Selection and Apriori Algorithm
Yıl 2025,
Cilt: 10 Sayı: 2, 474 - 496, 24.12.2025
Merve Köle
,
Emin Borandag
Öz
Digital systems record data on the books we read, items we purchase, or the products we enjoy, all within their own framework for the purpose of data mining. The information to be derived from these data through data mining methods is of great importance for these systems. Data mining aims to speed up the decision-making process by uncovering hidden relationships and information in data via mathematical and statistical techniques. In this context, data mining techniques were applied to the dataset containing book votes through the use of the Apriori algorithm in this study. In this way, the relationships within the data set were identified, rules were generated, and the connections between the generated rules and user preferences were disclosed. With the application of the Apriori algorithm, rules were generated that show books associated with other books, as well as authors often liked together with other authors. The study developed rules indicating which other books a reader might enjoy based on their interest in a particular book, as well as which authors might appeal to readers who like a given author. The rules produced in the study are intended to be used in book recommendation lists and sales strategies.
Etik Beyan
The work does not require ethics committee approval and any private permission.
Destekleyen Kurum
The authors have no received any financial support for the research, authorship, or publication of this study.
Kaynakça
-
Alaeddinoğlu, M., Aydın, T., & Dal, D. (2014). Birliktelik kurallari ile mekânsal-zamansal veri madenciliği. Erzincan University Journal of Science and Technology, 5(2), 191-212.
-
Xiao, W., Jing, L., Xu, Y., Zheng, S., Gan, Y., & Wen, C. (2021). Different data mining approaches based medical text data. Journal of Healthcare Engineering, 2021(1), 1285167. https://doi.org/10.1155/2021/1285167
-
Pinheiro, L. I. C. C., Pereira, M. L. D., Fernandez, M. P., Filho, F. M. V., de Abreu, W. J. C. P., & Pinheiro, P. G. C. D. (2021). Application of data mining algorithms for dementia in people with HIV/AIDS. Computational and Mathematical Methods in Medicine, 2021(1), 4602465. https://doi.org/10.1155/2021/4602465
-
Hong, J., Tamakloe, R., & Park, D. (2020). Discovering insightful rules among truck crash characteristics using apriori algorithm. Journal of advanced transportation, 2020(1), 4323816. https://doi.org/10.1155/2020/4323816
-
Alan, M. A., & Yeşilyurt, C. (2019). Birliktelik kuralları madenciliği ile yatan hasta profilinin çıkarılması. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 23(4), 1917-1926.
-
Agrawal, R., & Srikant, R. (1994, September 12-15). Fast algorithms for mining association rules [Conference presentation]. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile. https://www.vldb.org/conf/1994/P487.PDF
-
Wu, J., Guo, S., Huang, H., Liu, W., & Xiang, Y. (2018). Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives. IEEE Communications Surveys & Tutorials, 20(3), 2389-2406. https://doi.org/10.1109/COMST.2018.2812301
-
Özçakır, F. C., & Çamurcu, A. Y. (2007). Birliktelik kuralı yöntemi için bir veri madenciliği yazılımı tasarımı ve uygulaması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 6(12), 21-37.
-
Erdem, S., & Özdağoğlu, G. (2008). Ege Bölgesi'ndeki bir araştırma ve uygulama hastanesinin acil hasta verilerinin veri madenciliği ile analiz edilmesi. Anadolu University Journal of Sciences & Technology, 9(2).
-
Ay, D., & Çil, İ. (2010). Migros Türk AŞ. de birliktelik kurallarının yerleşim düzeni planlamada kullanılması. Endüstri Mühendisliği, 21(2), 14-29.
-
Hong, J., Tamakloe, R., & Park, D. (2020). Discovering insightful rules among truck crash characteristics using Apriori algorithm. Journal of Advanced Transportation, 2020(1), 4323816. https://doi.org/10.1155/2020/4323816
-
Erpolat, S. (2012). Otomobil yetkili servislerinde birliktelik kurallarının belirlenmesinde Apriori ve Fp-Growth algoritmalarının karşılaştırılması. Anadolu University Journal of Social Sciences, 12(2), 137–146.
-
Bilgin, T., & Acun, G. (2015). Yazılım hata logları kullanılarak veri madenciliği uygulaması gerçekleştirilmesi. Marmara Journal of Pure and Applied Sciences, 27(1), 14–20. https://doi.org/10.7240/mufbed.83214
-
Doğrul, G., Akay, D., & Kur, M. (2015). Trafik kazalarının birliktelik kuralları ile analizi. Gazi Journal of Engineering Sciences, 1(2), 265–283.
-
Çelik, B., & Aytekin, P. (2019, 1-4 Mayıs). Perakende sektöründe pazar sepeti analizi için Apriori algoritması ile birliktelik kurallarının oluşturulması [Conference presentation]. PPAD Pazarlama Kongresi - MMRA Marketing Congress Bildiri Kitabı, Kuşadası, Türkiye. https://www.researchgate.net/publication/344538987_Perakende_Sektorunde_Pazar_Sepeti_Analizi_icin_Apriori_Algoritmasi_ile_Birliktelik_Kurallarinin_Olusturulmasi
-
Li, Z., Li, X., Tang, R., & Zhang, L. (2021). Apriori algorithm for the data mining of global cyberspace security issues for human participatory based on association rules. Frontiers in Psychology, 11, 582480. https://doi.org/10.3389/fpsyg.2020.582480
-
Wang, H. B., & Gao, Y. J. (2021). Research on parallelization of Apriori algorithm in association rule mining. Procedia Computer Science, 183, 641–647. https://doi.org/10.1016/j.procs.2021.02.109
-
Hussain, S., & Hazarika, G. C. (2014). Educational data mining model using Rattle. International Journal of Advanced Computer Science and Applications, 5(6). https://doi.org/10.14569/IJACSA.2014.050605
-
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD international conference on Management of data, 207-216.
-
Hussain, S. (2017). Survey on current trends and techniques of data mining research. London Journal of Research in Computer Science and Technology, 17(1), 11.
-
Xu, R., & Luo, F. (2021). Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest. Safety Science, 135, 105125. https://doi.org/10.1016/j.ssci.2020.105125
-
Birant, D., Kut, A., Ventura, M., Altınok, H., Altınok, B., Altınok, E., & Ihlamur, M. (2010). İş zekası çözümleri için çok boyutlu birliktelik kuralları analizi. Akademik Bilişim, 10, 256.
-
Akpınar, H. (2000). Veri tabanlarında bilgi keşfi ve veri madenciliği. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 29(1), 1-22.
-
Liu, Y., Hu, X., Luo, X., Zhou, Y., Wang, D., & Farah, S. (2020). Identifying the most significant input parameters for predicting district heating load using an association rule algorithm. Journal of Cleaner Production, 275, 122984. https://doi.org/10.1016/j.jclepro.2020.122984
-
Altay, E. V., & Alataş, B. (2021). Differential evolution and sine cosine algorithm based novel hybrid multi-objective approaches for numerical association rule mining. Information Sciences, 554, 198–221. https://doi.org/10.1016/j.ins.2020.12.055
-
Dong, X., Hao, F., Zhao, L., & Xu, T. (2020). An efficient method for pruning redundant negative and positive association rules. Neurocomputing, 393, 245–258. https://doi.org/10.1016/j.neucom.2018.09.108
-
Fernandez-Basso, C., Ruiz, M. D., & Martin-Bautista, M. J. (2021). Spark solutions for discovering fuzzy association rules in Big Data. International Journal of Approximate Reasoning, 137, 94–112. https://doi.org/10.1016/j.ijar.2021.07.004
-
Ayberkin, D., & Özen, Ü. (2019). Apriori algoritmasının kullanılmasına yönelik bir yazılım tasarımı ve uygulaması: İŞKUR verilerinin değerlendirilmesi üzerine bir örnek çalışma. Journal of Business in the Digital Age, 2(2), 95–102.
-
Han, J., Kamber, M., & Pei, J. (2000). Data mining: Concepts and techniques. Morgan Kaufmann.
-
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.
-
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(1-4), 131-156. https://doi.org/10.3233/IDA-1997-1302
-
High, R., Eyres, G. T., Bremer, P., & Kebede, B. (2021). Characterization of blue cheese volatiles using fingerprinting, self-organizing maps, and entropy-based feature selection. Food Chemistry, 347, 128955. https://doi.org/10.1016/j.foodchem.2020.129011
-
Omuya, E. O., Okeyo, G. O., & Kimwele, M. W. (2021). Feature selection for classification using principal component analysis and information gain. Expert Systems with Applications, 174, 114765. https://doi.org/10.1016/j.eswa.2021.114765
-
Hakim, M. F., & Saputra, S. (2025). Analisis prediksi kelulusan mahasiswa universitas dinamika bangsa menggunakan metode naïve bayes. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 5(1), 1264-1273. https://doi.org/10.33998/jakakom.2025.5.1.1999
-
Novakovic, J., Strbac, P., & Bulatovic, D. (2011). Toward optimal feature selection using ranking methods and classification algorithms. Yugoslav Journal of Operations Research, 21(1), 119–135. https://doi.org/10.2298/YJOR1101119N
-
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–90. https://doi.org/10.1023/A:1022631118932
-
Kaynar, O., Arslan, H., Görmez, Y., & Işık, Y. E. (2018). Makine öğrenmesi ve öznitelik seçim yöntemleriyle saldırı tespiti. Bilişim Teknolojileri Dergisi, 11(2), 175–185. https://doi.org/10.17671/gazibtd.368583
-
Kira, K., & Rendell, L.A. (1992). The Feature Selection Problem: Traditional Methods and a New Algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI Press, Atlanta, 129-134.
-
Kononenko, I. (1994, 2 April). Estimating attributes: Analysis and extensions of RELIEF. [Conference presentation]. European conference on machine learning. Berlin, Heidelberg: Springer https://doi.org/10.1007/3-540-57868-4_57
-
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, 3 May). Improving recommendation lists through topic diversification. Proceedings of the 14th International Conference on World Wide Web). ACM. https://doi.org/10.1145/1060745.1060754
-
Dewson, R. (2014). SQL Server Management Studio. In Beginning SQL Server for Developers: Fourth Edition (pp. 25-42). Berkeley, CA: Apress.
-
Liu, H., & Wang, B. (2007). An association rule mining algorithm based on a Boolean matrix. Data Science Journal, 6, 559-565. https://doi.org/10.2481/dsj.6.S559
-
Bartley, P. (2009). Book tagging on Library Thing: how, why, and what are in the tags? Proceedings of the American Society for Information Science and Technology, 46(1), 1-22. https://doi.org/10.1002/meet.2009.1450460228