Derleme
BibTex RIS Kaynak Göster

Fonksiyonel Gıda İçin Sağlıklı Takviye: Mikroalgler

Yıl 2020, , 212 - 226, 18.12.2020
https://doi.org/10.33484/sinopfbd.756316

Öz

Mikroalgler çoklu doymamış yağ asitleri (PUFA), karotenoidler, fikobiliproteinler, polisakkaritler ve fitotoksin gibi çeşitli yüksek değerli ürünleri içermesi sebebiyle çekici ve değerli bir kaynak olmaktadır. Mikroalgler gıdaların besin değerini arttırmak için fonksiyonel bileşenler olarak kullanılabilir. Böylece, refah ve yaşam kalitesini iyileştirerek insan sağlığını olumlu yönde etkileyebilirler. Bu potansiyelleri nedeniyle, mikroalgler yeni ve fonksiyonel gıda üretmek için alternatif kaynaklar haline gelmiştir. Bu derlemede, mevcut mikroalg tüketimine bağlı sağlık yararları, biyoaktif bileşikler ve fonksiyonel bileşenler açısından mikroalglerin potansiyeli ortaya konmuş ve biyoerişilebilirlik bakımından önemine yer verilmiştir.

Kaynakça

  • Kavas G, Kavas N, 2009. Fonksiyonel Gıdalarda Mikroalglerin Nutrasötik Olarak Kullanılması, Dünya Gıda Dergisi: 98-99.
  • Alçay AÜ, Bostan K, Dinçel E, Varlık C, 2017. Alglerin insan gıdası olarak kullanımı, Aydın Gastronomy, 1(1): 47-59.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A, 2006. Commercial applications of microalgae, J Biosci Bioeng, 101: 87–97.
  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR, 2004. The evolution of modern eukaryotic phytoplankton, Sci, 305: 354–360.
  • Richmond A, 2004. Handbook of microalgal Culture: biotechnology and applied phycology. Blackwell Science Ltd., USA.
  • Milledge JJ, 2011. Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol, 10: 31–41.
  • Becker W, 2004. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K. Blackwell Science: 312–51.
  • Richmond A, Preiss K, 1980. The biotechnology of algaculture, Interdiscipl. Sci. Rev, 5(1): 60–70.
  • Del-Campo JA, Garcia-Gonzalez M, Guerrero MG, 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol, 74: 1163–1174.
  • Thajuddin N, Subramanian G, 2005. Cyanobacterial biodiversity and potential applications in biotechnology, Current Sci. 89 (1): 47-57.
  • Tomaselli L, 2004. The microalgal cell, 3-20, Handbook of Microalgal Culture, Biotechnology and Applied Phycology, Richmond, A. (Ed.), Blackwell Science, UK.
  • Chacon-Lee TL, Gonzalez-Marino GE, 2010. Microalgae for healthy foods-possibilities and challenges, Compr. Rev. Food Sci. Food Saf, 9: 655-675.
  • Hudson E, 2008. Trend watch: Spirulina—healthy, green, versatile. Available from:http://www.portal.euromonitor.com.simsrad.net.ocs.mq.edu.au/passport/ResultsList.aspx.
  • Bishop WM, Zubeck HM, 2012. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr &Food Sci, 2: 147.
  • Batista AP, Bandarra N, Raymundo A, Gouveia L, 2007. Microalgae biomass-a potential ingredients fort he food industry.EFFoST/EHED Joint Conference. Lisbon, Portugal.
  • Hemantkumar JN, Rahimbhai MI, 2019. Microalgae and its use in nutraceuticals and food supplements, Intechopen. Doi:http://dx.doi.org/10.5772/intechopen.90143.
  • Carlsson AS, van Beilen JB, Moller R, Clayton D, 2007. Micro- and macro-algae: utility for industrial applications. EPOBIO project. Available from: http://epobio.net/pdfs/0709AquaticReport.pdf.
  • Walker TL, Purton S, Becker DK, Collet C, 2005. Microalgae as bioreactors, Plant Cell Rep. 24: 629–641.
  • Mello-Sampayo C, Corvo ML, Mendes R, Duarte D, Lucas J, Pinto R, Batista AP, Raymundo A, Silva-Lima B, Bandarra NM, Gouveia L, 2013. Insights on the safety of carotenogenic Chlorella vulgaris in rodents, Algal Res. 2: 409–415.
  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A, 2007. Chlorella vulgaris biomass used as colouring source in traditional butter cookies, Innov. Food Sci. Emerg. Technol, 4: 433–436.
  • Raymundo A, Gouveia L, Batista AP, Empis J, Sousa I, 2005. Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilised by peaprotein, Food Res. Int, 38: 961-965.
  • Richmond A, 1986. Microalgae of economic potential. In: Richmond A, editor. CRC Handbook of microalgal mass culture. Boca Raton: CRC Press. p 199–243.
  • Sajilata MG, Singhal RS, Kamat MY, 2008. Fractionation of lipids and purification of g-linolenic acid (GLA) from Spirulina platensis, Food Chem, 109: 580–586.
  • Hu QH, 2004. Industrial production of microalgal cell-mass and secondary products mayor industrial species. Arthrospira (Spirulina) platensis sp. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K. Blackwell Science: 254–72.
  • Raja R, Coelho A, Hemaiswarya S, Kumar P, Carvalho IS, Alagarsamy A, 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef Univ J Basic Appl Sci, 7(4):740-747.
  • Romay Ch, Gonzalez R, Ledon N, Remirez D, Rimbau V, 2003. C-phycocyanin:a biliprotein with antioxidant, antiinflammatory and neuroprotective effects. Curr Protein Pept Sci, 4(3): 207-216.
  • Gouveia L, Coutinho C, Mendonça E, Batista AP, Sousa I, Bandarra NM, Raymundo A, 2008. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric, 88: 891-896.
  • Finney KF, Pomeranz Y, Bruinsma BL, 1984. Use of algae Dunaliella as a protein supplement in bread. Cereal Chem, 61: 402-406.
  • Cho EJ, Nam Es, Park SI, 2004. Keeping quality and sensory properties of drinkable yoghurt with added Chlorella extract. Korean J Food Nutr, 17: 128-132.
  • Ben-Amotz A, 2004. Industrial production of microalgal cell-mass and secondary products—mayor industrial species. Dunaliella. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K.: Blackwell Science. p 273–80.
  • Hamed I, Özogul F, Özogul Y, Regenstein JM, 2015. Marine Bioactive Compounds and Their Health Benefits: A Review, Compr. Rev. Food Sci.Food Saf, 14: 446-465.
  • Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra NM, 2008. Microalgae in novel food products. In: Papadoupoulos, K. (Ed.), Food Chemistry Research Developments. Nova Science Publishers, New York: 75–112.
  • Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka, 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotraophic culture. J Appl Phycology, 13: 395-402.
  • Yuan JP, Peng J, Yin K, Wang JH, 2011. Potential health promoting effects of astaxanthin:a high-value carotenoid mostly from microalgae. Mol Nutr Food Res, 55: 150-165.
  • Solovchenko AE, 2015. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res, 125:437-449.
  • Ferruzi MG, Blakeslee J, 2007. Digestion, absorption, and cancer preventive activity of dietary chlorophyll derivatives, Nutr. Res, 27: 1-12.
  • Becker EW, 1994. Microalgae: biotechnology and microbiology. Cambridge, UK: Cambridge University Press.
  • Mata TM, Martins AA, Caetano NS, 2010. Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev, 14: 217–232.
  • Pelah D, Sintov A, Cohen E, 2004. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity, World J Microbiol. Biotechnol, 20: 483–486.
  • Tukaj Z, Matusiak-Mikulin K, Lewandowska J, Szurkowski J, 2003. Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Scenedesmus armatus, Plant Physiol. Biochem, 41: 337–344.
  • Mohamed ZA, 2008. Polysaccharides as a protective response against microcystin induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem, Ecotoxicol, 17: 504–516.
  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR, 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed, Aquacult. Int, 15: 1-9.
  • Leya T, Rahn A, Lütz C, Remias D, 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology, FEMS Microbiol. Ecol, 67: 432–443.
  • Chu WL, 2012. Biotechnological applications of microalgae, Int. e-J Sci. Med. & Edu, 6: 24–37.
  • Li Y, Wei G, Chen J, 2004. Glutathione: a review on biotechnological production, Appl. Microbiol. Biotechnol, 66: 233–242.
  • Tanaka T, Shnimizu M, Moriwaki H, 2012. Cancer Chemoprevention by Carotenoids, Molecules, 17: 3202-3242.
  • de Claire GZ, de Cano MS, de Mule CZ, Steyerthal N, Piantanida M, 1995. Effect of Spirulina platensis on glucose, uric acid and cholesterol levels in the blood of rodents, Int. J Exp. Bot, 57: 93-96.
  • Román RB, Alvárez-Pez JM, Fernández FGA, Grima EM, 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum, J Biotechnol, 93(1): 73-85.
  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F, 2004. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae, Life Sci, 55: 2353-2362.
  • Eriksen NT, 2008. Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol, 80: 1-14.
  • Koller M, Muhr A, Braunegg G, 2014. Microalgae as versatile cellular factories for valued products, Algal Res, 6: 52–63.
  • Brennan L, Owende P, 2010. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev, 14(2): 557–577.
  • Matos AP, 2017. The impact of microalgae in food science and technology, Journal of the American Oil Chemists’ Society, 94 (11): 1333-1350.
  • Sijtsma L, de Swaaf ME, 2004. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol, 64: 146–153.
  • Becker EW, 2007. Micro-algae as a source of protein, Biotechnol. Adv, 25: 207–210.
  • Tokuşoglu, Ö., Ünal, M.K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana, J Food Sci. 68(4): 1144-1148.
  • Raposo MF, Morais RM, Morais AM, 2013. Health applications of bioactive compounds from marine microalgae, Life Sci, 93: 479–486.
  • Borowitzka MA, 1988. Vitamins and fine chemicals from micro-algae. In M.A. Borowitzka, and L.J. Borowitzka (Eds), Micro-algal biotechnology (pp. 153-196). Cambridge, UK. Cambridge University Press.
  • Lu X, Nan F, Feng J, Lv J, Liu Q, Liu X, Xie S, 2020. Effects of different enviromental factors on the growth and bioactive substance accumulation of Porphyridium purpureum. Int J Environ Res Pub Health, 17: 1-14.
  • Raposo MFJ, de Morais AMMB, de Morais RMSC, 2015. Bioactivity and applications of polysaccharides from marine microalgae. Polysacharides, 1683-1727.
  • Goh LP, Loh SP, Fatimah MY, Perumal K, 2009. Bioaccessibility of Carotenoids and Tocopherols in Marine Microalgae, Nannochloropsis sp. and Chaetoceros sp, Malays. J Nutr, 15(1): 77-86.
  • Alegria A, Garcia-Llatas G, Cilla A, 2015. Static digestion models: general introduction. In The Impact of Food Bioactives on Health. Springer: Heidelberg, Germany, 3-12.
  • Watanabe F, Takenaka S, Kittaka-Katsura H, 2002. Characterization and bioavailability of vitamin B12-compounds from edible algae. J Nutr Sci Vitaminol, 48(5): 325-331.
  • Fleurence J, 1999. Seaweed proteins:Biochemical, nutrional aspects and potential uses. Trends Food Sci Technol, 10: 25-28.

Healthy supplement for functional food: Microalgae

Yıl 2020, , 212 - 226, 18.12.2020
https://doi.org/10.33484/sinopfbd.756316

Öz

Microalgae are an attractive and valuable resource because they consist of various high-value products such as polyunsaturated fatty acids (PUFA), carotenoids, phycobiliproteins, polysaccharides and phytotoxins. Microalgae can be used as functional ingredients to enhance the nutritional value of foods. Thus, it positively may affect human health by improving the well-being and quality of life. Due to its potentials, microalgae have become alternative sources for new and functional food products. In this review, the potential of microalgae consumption in terms of health benefits, bioactive compounds, functional ingredients are shown up and bioaccessibility of microalgae bioactive compounds is discussed.

Kaynakça

  • Kavas G, Kavas N, 2009. Fonksiyonel Gıdalarda Mikroalglerin Nutrasötik Olarak Kullanılması, Dünya Gıda Dergisi: 98-99.
  • Alçay AÜ, Bostan K, Dinçel E, Varlık C, 2017. Alglerin insan gıdası olarak kullanımı, Aydın Gastronomy, 1(1): 47-59.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A, 2006. Commercial applications of microalgae, J Biosci Bioeng, 101: 87–97.
  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR, 2004. The evolution of modern eukaryotic phytoplankton, Sci, 305: 354–360.
  • Richmond A, 2004. Handbook of microalgal Culture: biotechnology and applied phycology. Blackwell Science Ltd., USA.
  • Milledge JJ, 2011. Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol, 10: 31–41.
  • Becker W, 2004. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K. Blackwell Science: 312–51.
  • Richmond A, Preiss K, 1980. The biotechnology of algaculture, Interdiscipl. Sci. Rev, 5(1): 60–70.
  • Del-Campo JA, Garcia-Gonzalez M, Guerrero MG, 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol, 74: 1163–1174.
  • Thajuddin N, Subramanian G, 2005. Cyanobacterial biodiversity and potential applications in biotechnology, Current Sci. 89 (1): 47-57.
  • Tomaselli L, 2004. The microalgal cell, 3-20, Handbook of Microalgal Culture, Biotechnology and Applied Phycology, Richmond, A. (Ed.), Blackwell Science, UK.
  • Chacon-Lee TL, Gonzalez-Marino GE, 2010. Microalgae for healthy foods-possibilities and challenges, Compr. Rev. Food Sci. Food Saf, 9: 655-675.
  • Hudson E, 2008. Trend watch: Spirulina—healthy, green, versatile. Available from:http://www.portal.euromonitor.com.simsrad.net.ocs.mq.edu.au/passport/ResultsList.aspx.
  • Bishop WM, Zubeck HM, 2012. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr &Food Sci, 2: 147.
  • Batista AP, Bandarra N, Raymundo A, Gouveia L, 2007. Microalgae biomass-a potential ingredients fort he food industry.EFFoST/EHED Joint Conference. Lisbon, Portugal.
  • Hemantkumar JN, Rahimbhai MI, 2019. Microalgae and its use in nutraceuticals and food supplements, Intechopen. Doi:http://dx.doi.org/10.5772/intechopen.90143.
  • Carlsson AS, van Beilen JB, Moller R, Clayton D, 2007. Micro- and macro-algae: utility for industrial applications. EPOBIO project. Available from: http://epobio.net/pdfs/0709AquaticReport.pdf.
  • Walker TL, Purton S, Becker DK, Collet C, 2005. Microalgae as bioreactors, Plant Cell Rep. 24: 629–641.
  • Mello-Sampayo C, Corvo ML, Mendes R, Duarte D, Lucas J, Pinto R, Batista AP, Raymundo A, Silva-Lima B, Bandarra NM, Gouveia L, 2013. Insights on the safety of carotenogenic Chlorella vulgaris in rodents, Algal Res. 2: 409–415.
  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A, 2007. Chlorella vulgaris biomass used as colouring source in traditional butter cookies, Innov. Food Sci. Emerg. Technol, 4: 433–436.
  • Raymundo A, Gouveia L, Batista AP, Empis J, Sousa I, 2005. Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilised by peaprotein, Food Res. Int, 38: 961-965.
  • Richmond A, 1986. Microalgae of economic potential. In: Richmond A, editor. CRC Handbook of microalgal mass culture. Boca Raton: CRC Press. p 199–243.
  • Sajilata MG, Singhal RS, Kamat MY, 2008. Fractionation of lipids and purification of g-linolenic acid (GLA) from Spirulina platensis, Food Chem, 109: 580–586.
  • Hu QH, 2004. Industrial production of microalgal cell-mass and secondary products mayor industrial species. Arthrospira (Spirulina) platensis sp. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K. Blackwell Science: 254–72.
  • Raja R, Coelho A, Hemaiswarya S, Kumar P, Carvalho IS, Alagarsamy A, 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef Univ J Basic Appl Sci, 7(4):740-747.
  • Romay Ch, Gonzalez R, Ledon N, Remirez D, Rimbau V, 2003. C-phycocyanin:a biliprotein with antioxidant, antiinflammatory and neuroprotective effects. Curr Protein Pept Sci, 4(3): 207-216.
  • Gouveia L, Coutinho C, Mendonça E, Batista AP, Sousa I, Bandarra NM, Raymundo A, 2008. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric, 88: 891-896.
  • Finney KF, Pomeranz Y, Bruinsma BL, 1984. Use of algae Dunaliella as a protein supplement in bread. Cereal Chem, 61: 402-406.
  • Cho EJ, Nam Es, Park SI, 2004. Keeping quality and sensory properties of drinkable yoghurt with added Chlorella extract. Korean J Food Nutr, 17: 128-132.
  • Ben-Amotz A, 2004. Industrial production of microalgal cell-mass and secondary products—mayor industrial species. Dunaliella. In: Richmond A, editor. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, U.K.: Blackwell Science. p 273–80.
  • Hamed I, Özogul F, Özogul Y, Regenstein JM, 2015. Marine Bioactive Compounds and Their Health Benefits: A Review, Compr. Rev. Food Sci.Food Saf, 14: 446-465.
  • Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra NM, 2008. Microalgae in novel food products. In: Papadoupoulos, K. (Ed.), Food Chemistry Research Developments. Nova Science Publishers, New York: 75–112.
  • Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka, 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotraophic culture. J Appl Phycology, 13: 395-402.
  • Yuan JP, Peng J, Yin K, Wang JH, 2011. Potential health promoting effects of astaxanthin:a high-value carotenoid mostly from microalgae. Mol Nutr Food Res, 55: 150-165.
  • Solovchenko AE, 2015. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res, 125:437-449.
  • Ferruzi MG, Blakeslee J, 2007. Digestion, absorption, and cancer preventive activity of dietary chlorophyll derivatives, Nutr. Res, 27: 1-12.
  • Becker EW, 1994. Microalgae: biotechnology and microbiology. Cambridge, UK: Cambridge University Press.
  • Mata TM, Martins AA, Caetano NS, 2010. Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev, 14: 217–232.
  • Pelah D, Sintov A, Cohen E, 2004. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity, World J Microbiol. Biotechnol, 20: 483–486.
  • Tukaj Z, Matusiak-Mikulin K, Lewandowska J, Szurkowski J, 2003. Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Scenedesmus armatus, Plant Physiol. Biochem, 41: 337–344.
  • Mohamed ZA, 2008. Polysaccharides as a protective response against microcystin induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem, Ecotoxicol, 17: 504–516.
  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR, 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed, Aquacult. Int, 15: 1-9.
  • Leya T, Rahn A, Lütz C, Remias D, 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology, FEMS Microbiol. Ecol, 67: 432–443.
  • Chu WL, 2012. Biotechnological applications of microalgae, Int. e-J Sci. Med. & Edu, 6: 24–37.
  • Li Y, Wei G, Chen J, 2004. Glutathione: a review on biotechnological production, Appl. Microbiol. Biotechnol, 66: 233–242.
  • Tanaka T, Shnimizu M, Moriwaki H, 2012. Cancer Chemoprevention by Carotenoids, Molecules, 17: 3202-3242.
  • de Claire GZ, de Cano MS, de Mule CZ, Steyerthal N, Piantanida M, 1995. Effect of Spirulina platensis on glucose, uric acid and cholesterol levels in the blood of rodents, Int. J Exp. Bot, 57: 93-96.
  • Román RB, Alvárez-Pez JM, Fernández FGA, Grima EM, 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum, J Biotechnol, 93(1): 73-85.
  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F, 2004. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae, Life Sci, 55: 2353-2362.
  • Eriksen NT, 2008. Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol, 80: 1-14.
  • Koller M, Muhr A, Braunegg G, 2014. Microalgae as versatile cellular factories for valued products, Algal Res, 6: 52–63.
  • Brennan L, Owende P, 2010. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev, 14(2): 557–577.
  • Matos AP, 2017. The impact of microalgae in food science and technology, Journal of the American Oil Chemists’ Society, 94 (11): 1333-1350.
  • Sijtsma L, de Swaaf ME, 2004. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol, 64: 146–153.
  • Becker EW, 2007. Micro-algae as a source of protein, Biotechnol. Adv, 25: 207–210.
  • Tokuşoglu, Ö., Ünal, M.K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana, J Food Sci. 68(4): 1144-1148.
  • Raposo MF, Morais RM, Morais AM, 2013. Health applications of bioactive compounds from marine microalgae, Life Sci, 93: 479–486.
  • Borowitzka MA, 1988. Vitamins and fine chemicals from micro-algae. In M.A. Borowitzka, and L.J. Borowitzka (Eds), Micro-algal biotechnology (pp. 153-196). Cambridge, UK. Cambridge University Press.
  • Lu X, Nan F, Feng J, Lv J, Liu Q, Liu X, Xie S, 2020. Effects of different enviromental factors on the growth and bioactive substance accumulation of Porphyridium purpureum. Int J Environ Res Pub Health, 17: 1-14.
  • Raposo MFJ, de Morais AMMB, de Morais RMSC, 2015. Bioactivity and applications of polysaccharides from marine microalgae. Polysacharides, 1683-1727.
  • Goh LP, Loh SP, Fatimah MY, Perumal K, 2009. Bioaccessibility of Carotenoids and Tocopherols in Marine Microalgae, Nannochloropsis sp. and Chaetoceros sp, Malays. J Nutr, 15(1): 77-86.
  • Alegria A, Garcia-Llatas G, Cilla A, 2015. Static digestion models: general introduction. In The Impact of Food Bioactives on Health. Springer: Heidelberg, Germany, 3-12.
  • Watanabe F, Takenaka S, Kittaka-Katsura H, 2002. Characterization and bioavailability of vitamin B12-compounds from edible algae. J Nutr Sci Vitaminol, 48(5): 325-331.
  • Fleurence J, 1999. Seaweed proteins:Biochemical, nutrional aspects and potential uses. Trends Food Sci Technol, 10: 25-28.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

Sibel Uzuner 0000-0003-1050-8206

Asiye Haznedar 0000-0003-1037-8296

Yayımlanma Tarihi 18 Aralık 2020
Gönderilme Tarihi 22 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uzuner, S., & Haznedar, A. (2020). Fonksiyonel Gıda İçin Sağlıklı Takviye: Mikroalgler. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 212-226. https://doi.org/10.33484/sinopfbd.756316


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.