Araştırma Makalesi
BibTex RIS Kaynak Göster

Bakır Oksit Nanopartiküllerinin Chlorella vulgaris Üzerindeki Ekotoksik Etkileri

Yıl 2017, Cilt: 2 Sayı: 1, 13 - 23, 01.07.2017

Öz

Bu çalışmada bakır oksit
(CuO) nanopartiküllerinin yeşil alg türü olan Chlorella vulgaris üzerindeki ekotoksik etkileri incelenmiştir.
CuO nanopartikülleri farklı dispersiyon metodları
(karıştırma ve problu sonikasyon) ile farklı konsantrasyonlarda (1, 10, 50, 100
mg/L), farklı su kalite özelliklerine sahip (çok yumuşak - çok sert, düşük -
yüksek alkalinite, pH 6,5 - 7,5) sentetik yüzeysel su örnekleri içinde
hazırlanmıştır. Etki analizleri kapsamında alg inhibisyonu ve klorofil a
içeriğindeki değişim incelenmiştir. Çalışma sonunda konsantrasyondan ve su içeriğinden bağımsız olarak CuO
nanopartiküllerinin C. vulgaris
üzerinde yüksek inhibisyona (%95 - 99) neden olduğu, özellikle sonikasyon
yöntemi ile hazırlanan nanopartiküllerin karıştırma yöntemine göre daha etkili
olduğu tespit edilmiştir.

Kaynakça

  • Farré, M., J. Sanchís and D. Barceló. 2011. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends in Analytical Chemistry, 30(3): 517-527.
  • Brar, S. K., M. Verma, R. Tyagi and R. Surampalli. 2010. Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste management, 30(3): 504-520.
  • Van Hoecke, K., K. A. De Schamphelaere, P. Van der Meeren, G. Smagghe and C. R. Janssen. 2011. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environmental Pollution, 159(4): 970-976.
  • Ren, G. G., D. W. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip and R. P. Allaker. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6): 587-590.
  • Xu, J. F., W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin. 1999. Preparation and characterization of CuO nanocrystals. Journal of Solid State Chemistry, 147(2): 516-519.
  • Zhu, J. W., D. Li, H. Q. Chen, X. J. Yang, L. Lu and X. Wang. 2004. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 58(26): 3324-3327.
  • Marino, E., T. Huijser, Y. Creyghton and A. van der Heijden. 2007. Synthesis and coating of copper oxide nanoparticles using atmospheric pressure plasmas. Surface & Coatings Technology, 201(22-23): 9205-9208.
  • Gabbay, J., G. Borkow, J. Mishal, E. Magen, R. Zatcoff and Y. Shemer-Avni. 2006. Copper oxide impregnated textiles with potent biocidal activities. Journal of Industrial Textiles, 35(4): 323-335.
  • USEPA (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, EPA-821-R-02-013, U.S. Environmental Protection Agency, Office of Water.
  • OECD. 2011. 201: Freshwater Alga and Cyanobacteria. Growth Inhibition Test.
  • Yoon, K.-Y., J. H. Byeon, J.-H. Park and J. Hwang. 2007. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373(2): 572-575.
  • Erdem, A., D. Metzler, D. Cha and C. P. Huang. 2014. Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 12(9): 2987-2996.
  • USEPA (2004). ESS Method 150.1: Chlorophyll. Spectrophotometric, Environmental Sciences Section, Inorganic Chemistry Unit, Wisconsin State Lab of Hygiene, EPA.
  • Sousa, V. S. and M. R. Teixeira. 2013. Aggregation kinetics and surface charge of CuO nanoparticles: the influence of pH, ionic strength and humic acids. Environmental Chemistry, 10(4): 313.
  • El-Trass, A., H. ElShamy, I. El-Mehasseb and M. El-Kemary. 2012. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science, 258(7): 2997-3001.
  • Adams, L. K., D. Y. Lyon and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19): 3527-3532.
  • Hund-Rinke, K. and M. Simon. 2006. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research, 13(4): 225-232.
  • Lovern, S. B. and R. Klaper. 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental toxicology and chemistry, 25(4): 1132-1137.
  • Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5): 372-386.
  • Metzler, D. M., M. Li, A. Erdem and C. P. Huang. 2011. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 170(2–3): 538-546.
  • Aruoja, V., H.-C. Dubourguier, K. Kasemets and A. Kahru. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the total environment, 407(4): 1461-1468.
  • Hartmann, N. B., F. Von der Kammer, T. Hofmann, M. Baalousha, S. Ottofuelling and A. Baun. 2010. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 269(2-3): 190-197.
  • Kim, K. T., S. J. Klaine, J. Cho, S. H. Kim and S. D. Kim. 2010. Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Science of the Total Environment, 408(10): 2268-2272.
  • Franklin, N. M., N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 41(24): 8484-8490.
  • Peng, X. H., S. Palma, N. S. Fisher and S. S. Wong. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102(3-4): 186-196.
  • Quik, J. T. K., I. Lynch, K. Van Hoecke, C. J. H. Miermans, K. A. C. De Schamphelaere, C. R. Janssen, K. A. Dawson, M. A. C. Stuart and D. Van de Meent. 2010. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 81(6): 711-715.
  • Van Hoecke, K., J. T. K. Quik, J. Mankiewicz-Boczek, K. A. C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C. V. Howard, D. Van De Meent, K. Rydzynski, K. A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze and C. R. Janssen. 2009. Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests. Environmental Science & Technology, 43(12): 4537-4546.
  • Baek, Y.-W. and Y.-J. An. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3 to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Science of the total environment, 409(8): 1603-1608.
Yıl 2017, Cilt: 2 Sayı: 1, 13 - 23, 01.07.2017

Öz

Kaynakça

  • Farré, M., J. Sanchís and D. Barceló. 2011. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends in Analytical Chemistry, 30(3): 517-527.
  • Brar, S. K., M. Verma, R. Tyagi and R. Surampalli. 2010. Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste management, 30(3): 504-520.
  • Van Hoecke, K., K. A. De Schamphelaere, P. Van der Meeren, G. Smagghe and C. R. Janssen. 2011. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environmental Pollution, 159(4): 970-976.
  • Ren, G. G., D. W. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip and R. P. Allaker. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6): 587-590.
  • Xu, J. F., W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin. 1999. Preparation and characterization of CuO nanocrystals. Journal of Solid State Chemistry, 147(2): 516-519.
  • Zhu, J. W., D. Li, H. Q. Chen, X. J. Yang, L. Lu and X. Wang. 2004. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 58(26): 3324-3327.
  • Marino, E., T. Huijser, Y. Creyghton and A. van der Heijden. 2007. Synthesis and coating of copper oxide nanoparticles using atmospheric pressure plasmas. Surface & Coatings Technology, 201(22-23): 9205-9208.
  • Gabbay, J., G. Borkow, J. Mishal, E. Magen, R. Zatcoff and Y. Shemer-Avni. 2006. Copper oxide impregnated textiles with potent biocidal activities. Journal of Industrial Textiles, 35(4): 323-335.
  • USEPA (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, EPA-821-R-02-013, U.S. Environmental Protection Agency, Office of Water.
  • OECD. 2011. 201: Freshwater Alga and Cyanobacteria. Growth Inhibition Test.
  • Yoon, K.-Y., J. H. Byeon, J.-H. Park and J. Hwang. 2007. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373(2): 572-575.
  • Erdem, A., D. Metzler, D. Cha and C. P. Huang. 2014. Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 12(9): 2987-2996.
  • USEPA (2004). ESS Method 150.1: Chlorophyll. Spectrophotometric, Environmental Sciences Section, Inorganic Chemistry Unit, Wisconsin State Lab of Hygiene, EPA.
  • Sousa, V. S. and M. R. Teixeira. 2013. Aggregation kinetics and surface charge of CuO nanoparticles: the influence of pH, ionic strength and humic acids. Environmental Chemistry, 10(4): 313.
  • El-Trass, A., H. ElShamy, I. El-Mehasseb and M. El-Kemary. 2012. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science, 258(7): 2997-3001.
  • Adams, L. K., D. Y. Lyon and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19): 3527-3532.
  • Hund-Rinke, K. and M. Simon. 2006. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research, 13(4): 225-232.
  • Lovern, S. B. and R. Klaper. 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental toxicology and chemistry, 25(4): 1132-1137.
  • Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5): 372-386.
  • Metzler, D. M., M. Li, A. Erdem and C. P. Huang. 2011. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 170(2–3): 538-546.
  • Aruoja, V., H.-C. Dubourguier, K. Kasemets and A. Kahru. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the total environment, 407(4): 1461-1468.
  • Hartmann, N. B., F. Von der Kammer, T. Hofmann, M. Baalousha, S. Ottofuelling and A. Baun. 2010. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 269(2-3): 190-197.
  • Kim, K. T., S. J. Klaine, J. Cho, S. H. Kim and S. D. Kim. 2010. Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Science of the Total Environment, 408(10): 2268-2272.
  • Franklin, N. M., N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 41(24): 8484-8490.
  • Peng, X. H., S. Palma, N. S. Fisher and S. S. Wong. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102(3-4): 186-196.
  • Quik, J. T. K., I. Lynch, K. Van Hoecke, C. J. H. Miermans, K. A. C. De Schamphelaere, C. R. Janssen, K. A. Dawson, M. A. C. Stuart and D. Van de Meent. 2010. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 81(6): 711-715.
  • Van Hoecke, K., J. T. K. Quik, J. Mankiewicz-Boczek, K. A. C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C. V. Howard, D. Van De Meent, K. Rydzynski, K. A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze and C. R. Janssen. 2009. Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests. Environmental Science & Technology, 43(12): 4537-4546.
  • Baek, Y.-W. and Y.-J. An. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3 to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Science of the total environment, 409(8): 1603-1608.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Ayça Erdem

Merve Özkaleli

Yayımlanma Tarihi 1 Temmuz 2017
Gönderilme Tarihi 3 Ekim 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 2 Sayı: 1

Kaynak Göster

APA Erdem, A., & Özkaleli, M. (2017). Bakır Oksit Nanopartiküllerinin Chlorella vulgaris Üzerindeki Ekotoksik Etkileri. Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1), 13-23.


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.