Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of 9Be Fusion Cross Sections via a Simple Cluster Model

Yıl 2021, Cilt: 6 Sayı: 1, 33 - 41, 11.06.2021
https://doi.org/10.33484/sinopfbd.857418

Öz

The effects of different cluster configurations of 9Be nucleus on the cross-sections of 9Be + 28Si, 9Be + 64Zn, 9Be + 144Sm, 9Be + 186W and 9Be + 208Pb fusion reactions have been explored for the first time using a simple cluster approach. The real potential has been calculated based on the α + α + n, d + 7Li, 3H + 6Li, 3He + 6He and n + 8Be cluster cases of the 9Be nucleus while the imaginary potential is evaluated as Woods-Saxon potential. It has been seen that our results are in agreement with the experimental data. In addition to this, the fusion barrier height (VB) and barrier position (RB) values have been given for each reaction and cluster case.

Kaynakça

  • Urazbekov, B. A., Denikin, A. S., Lukyanov, S. M., Itaco, N., Janseitov, D. M., Mendibayev, K., Burjan, V., Kroha, V., Mrazek, J., Trzaska, W. H., Harakeh, M. N., Etasse, D., Stefan, I., Verney, D., Issatayev, T., Penionzhkevich, Yu E., Kuterbekov, K. A., & Zholdybaye, T. (2019). Clusterization and strong coupled-channels effects in deuteron interaction with 9Be nuclei. Journal of Physics G: Nuclear and Particle Physics, 46(10), 105-110. https://doi.org/10.1088/1361-6471/ab37a6
  • Lukyanov, S. M., Harakeh, M. N., Naumenko, M. A., Xu Yi, Trzaska, W. H., Burjan, V., Kroha, V., Mrazek, J., Glagole, V., Piskoř, Š., Voskoboynik, E. I., Khlebnikov, S. V., Penionzhkevich, YuE, Skobelev, N. K., Sobolev, G., Yu., Tyurin, G. P., Kuterbekov, K., & Tuleushev, Yu. (2015). Some insights into cluster structure of 9Be from 3He + 9Be reaction. World Journal of Nuclear Science and Technology, 5(4), 265-273. https://doi.org/10.4236/wjnst.2015.54026
  • Camacho, A. G., Gomes, P. R. S., Lubian, J., & Padrón, I. (2008). Simultaneous optical model analysis of elastic scattering, fusion, and breakup for the 9Be + 144Sm system at near-barrier energies. Physical Review C, 77(5), Article 054606. https://link.aps.org/doi/10.1103/PhysRevC.77.054606
  • Sert, Y., Yegin, R., & Doğan, H. (2015). A theoretical investigation of 9Be+ 27Al reaction: phenomenological and microscopic model approximation. Indian Journal of Physics, 89(10), 1093-1100. https://doi.org/10.1007/s12648-015-0685-9
  • Pandit, S. K., Jha, V., Mahata, K., Santra, S., Palshetkar, C. S., Ramachandran, K., Parkar, V. V., Shrivastava, A., Kumawat, H., Roy, B. J., Chatterjee, A., & Kailas, S. (2011). Investigation of cluster structure of 9Be from high precision elastic scattering data. Physical Review C, 84(3), Article 031601. https://link.aps.org/doi/10.1103/PhysRevC.84.031601
  • Aygun, M. (2017). A comparative analysis of the density distributions and the structure models of 9Li. Pramana, 88(3), Article 53. https://doi.org/10.1007/s12043-016-1360-1
  • Aygun, M., & Aygun, Z. (2017). A theoretical study on different cluster configurations of the 9Be nucleus by using a simple cluster model. Nuclear Science and Techniques, 28(6), Article 86. https://doi.org/10.1007/s41365-017-0239-2
  • Aygun, M. (2016). A comprehensive study on the internal structure and thedensity distribution of 12Be. Revista Mexicana de Física, 62(4), 336-343. http://www.redalyc.org/articulo.oa?id=57046490009
  • Aygun, M. (2020). A comprehensive theoretical analysis of 12B + 58Ni elastic scattering measured for the first time by using different density distributions, different nuclear potentials and different cluster approaches. Pramana, 94(1), 1-14. https://doi.org/10.1007/s12043-020-01979-w
  • Aygun, M. (2020). A comprehensive theoretical analysis of 22Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. International Journal of Modern Physics E, 29(01), Article 1950112. https://doi.org/10.1142/S021830131950112X
  • Kukulin, V. I., & Voronchev, V. T. (2010). Pinch-based thermonuclear D 3 He fusion driven by a femtosecond laser. Physics of Atomic Nuclei, 73(8), 1376-1383. https://doi.org/10.1134/S1063778810080107
  • Seksembayev, Z., Kukulin, V., & Sakhiyev, S. (2018). Study of a dense hot plasma’s burning in Z-pinch devices with inertial-magnetic confinement. Physica Scripta, 93(8), Article 085602. https://doi.org/10.1088/1402-4896/aacadf
  • Satchler, G. R., & Love, W. G. (1979). Folding model potentials from realistic interactions for heavy-ion scattering. Physics Reports, 55(3), 183-254. https://doi.org/10.1016/0370-1573(79)90081-4
  • RIPL-3 (2021, May 23). Reference Input Parameter Library. http://www-nds.iaea.org/RIPL-3.
  • Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. Sh., & Talou, P. (2009). RIPL–reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nuclear Data Sheets, 110(12), 3107-3214. https://doi.org/10.1016/j.nds.2009.10.004
  • Farid, M. E. A., & Hassanain, M. A. (2000). Density-independent folding analysis of the 6,7Li elastic scattering at intermediate energies. Nuclear Physics A, 678(1-2), 39-75. https://doi.org/10.1016/S0375-9474(00)00313-4
  • De Jager, C. W., De Vries, H., & De Vries, C. (1974). Nuclear charge-and magnetization-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables, 14(5-6), 479-508. https://doi.org/10.1016/S0092-640X(74)80002-1
  • Hossain, S., Abdullah, M. N. A., Rahman, M. Z., Basak, A. K., & Malik, F. B. (2013). Non-monotonic potentials for 6Li elastic scattering at 88 MeV. Physica Scripta, 87(1), Article 015201. https://doi.org/10.1088/0031-8949/87/01/015201
  • Cook, J. (1982). DFPOT-a program for the calculation of double folded potentials. Computer Physics Communications, 25(2), 125-139.
  • Thompson, I. J. (1988). Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7(4), 167-212. https://doi:10.1016/0167-7977(88)90005-6
  • Eck, J. S., Leigh, J. R., Ophel, T. R., & Clark, P. D. (1980). Total fusion cross section for the 9Be + 28Si system. Physical Review C, 21(6), Article 2352. https://doi.org/10.1103/PhysRevC.21.2352
  • Moraes, S. B., Gomes, P. R. S, Lubian, J., Alves, J. J. S., Anjos, R. M., SantAnna, M. M., Padrn, I., Muri, C., Liguori, Neto, R., & Added, N. (2000). Fusion and elastic scattering of 9Be+ 64Zn: a search of the breakup influence on these processes. Physical Review C, 61(6), Article 064608. https://doi.org/10.1103/PhysRevC.61.064608
  • Gomes, P. R. S., Padron, I., Crema, E., Capurro, O., Fernández, Niello, J. O., Arazi, A., Martí, G.V., Lubian, J., Trotta, M., Pacheco, A., Testoni, J. E., Rodríguez, M. D., Ortega, M. E., Chamon, L., Anjos, R.M., Veiga, R., Dasgupta, M., Hinde, D. J., & Hagino, K. (2006). Comprehensive study of reaction mechanisms for the 9Be + 144Sm system at near-and sub-barrier energies. Physical Review C, 73(6), Article 064606. https://doi.org/10.1103/PhysRevC.73.064606
  • Kharab, R., & Kumari, A. (2019). Influence of projectile breakup on fusion reactions induced by 9Be at near barrier energies. Nuclear Physics A, 981, 62-74. https://doi.org/10.1016/j.nuclphysa.2018.10.081
  • Dasgupta, M., Hinde, D. J., Sheehy, S. L., & Bouriquet, B. (2010). Suppression of fusion by breakup: Resolving the discrepancy between the reactions of 9Be with 208Pb and 209Bi. Physical Review C, 81(2), Article 024608. https://doi.org/10.1103/PhysRevC.81.024608

Basit Bir Küme Modeli Aracılığıyla 9Be Füzyon Tesir Kesitlerinin Analizi

Yıl 2021, Cilt: 6 Sayı: 1, 33 - 41, 11.06.2021
https://doi.org/10.33484/sinopfbd.857418

Öz

9Be + 28Si, 9Be + 64Zn, 9Be + 144Sm, 9Be + 186W ve 9Be + 208Pb füzyon reaksiyonlarının kesitleri üzerine 9Be çekirdeğinin farklı küme konfigürasyonlarının etkileri basit bir küme yaklaşımı kullanılarak ilk kez araştırılmıştır. Sanal potansiyel Woods-Saxon potansiyeli olarak değerlendirilirken, reel potansiyel 9Be çekirdeğinin α + α + n, d + 7Li, 3H + 6Li, 3He + 6He ve n + 8Be küme durumlarına göre hesaplanmıştır. Sonuçlarımızın deneysel verilerle uyumlu olduğu görülmüştür. Buna ek olarak füzyon bariyer yüksekliği (VB) ve bariyer pozisyon (RB) değerleri her bir reaksiyon ve küme durumu için verilmiştir.

Kaynakça

  • Urazbekov, B. A., Denikin, A. S., Lukyanov, S. M., Itaco, N., Janseitov, D. M., Mendibayev, K., Burjan, V., Kroha, V., Mrazek, J., Trzaska, W. H., Harakeh, M. N., Etasse, D., Stefan, I., Verney, D., Issatayev, T., Penionzhkevich, Yu E., Kuterbekov, K. A., & Zholdybaye, T. (2019). Clusterization and strong coupled-channels effects in deuteron interaction with 9Be nuclei. Journal of Physics G: Nuclear and Particle Physics, 46(10), 105-110. https://doi.org/10.1088/1361-6471/ab37a6
  • Lukyanov, S. M., Harakeh, M. N., Naumenko, M. A., Xu Yi, Trzaska, W. H., Burjan, V., Kroha, V., Mrazek, J., Glagole, V., Piskoř, Š., Voskoboynik, E. I., Khlebnikov, S. V., Penionzhkevich, YuE, Skobelev, N. K., Sobolev, G., Yu., Tyurin, G. P., Kuterbekov, K., & Tuleushev, Yu. (2015). Some insights into cluster structure of 9Be from 3He + 9Be reaction. World Journal of Nuclear Science and Technology, 5(4), 265-273. https://doi.org/10.4236/wjnst.2015.54026
  • Camacho, A. G., Gomes, P. R. S., Lubian, J., & Padrón, I. (2008). Simultaneous optical model analysis of elastic scattering, fusion, and breakup for the 9Be + 144Sm system at near-barrier energies. Physical Review C, 77(5), Article 054606. https://link.aps.org/doi/10.1103/PhysRevC.77.054606
  • Sert, Y., Yegin, R., & Doğan, H. (2015). A theoretical investigation of 9Be+ 27Al reaction: phenomenological and microscopic model approximation. Indian Journal of Physics, 89(10), 1093-1100. https://doi.org/10.1007/s12648-015-0685-9
  • Pandit, S. K., Jha, V., Mahata, K., Santra, S., Palshetkar, C. S., Ramachandran, K., Parkar, V. V., Shrivastava, A., Kumawat, H., Roy, B. J., Chatterjee, A., & Kailas, S. (2011). Investigation of cluster structure of 9Be from high precision elastic scattering data. Physical Review C, 84(3), Article 031601. https://link.aps.org/doi/10.1103/PhysRevC.84.031601
  • Aygun, M. (2017). A comparative analysis of the density distributions and the structure models of 9Li. Pramana, 88(3), Article 53. https://doi.org/10.1007/s12043-016-1360-1
  • Aygun, M., & Aygun, Z. (2017). A theoretical study on different cluster configurations of the 9Be nucleus by using a simple cluster model. Nuclear Science and Techniques, 28(6), Article 86. https://doi.org/10.1007/s41365-017-0239-2
  • Aygun, M. (2016). A comprehensive study on the internal structure and thedensity distribution of 12Be. Revista Mexicana de Física, 62(4), 336-343. http://www.redalyc.org/articulo.oa?id=57046490009
  • Aygun, M. (2020). A comprehensive theoretical analysis of 12B + 58Ni elastic scattering measured for the first time by using different density distributions, different nuclear potentials and different cluster approaches. Pramana, 94(1), 1-14. https://doi.org/10.1007/s12043-020-01979-w
  • Aygun, M. (2020). A comprehensive theoretical analysis of 22Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. International Journal of Modern Physics E, 29(01), Article 1950112. https://doi.org/10.1142/S021830131950112X
  • Kukulin, V. I., & Voronchev, V. T. (2010). Pinch-based thermonuclear D 3 He fusion driven by a femtosecond laser. Physics of Atomic Nuclei, 73(8), 1376-1383. https://doi.org/10.1134/S1063778810080107
  • Seksembayev, Z., Kukulin, V., & Sakhiyev, S. (2018). Study of a dense hot plasma’s burning in Z-pinch devices with inertial-magnetic confinement. Physica Scripta, 93(8), Article 085602. https://doi.org/10.1088/1402-4896/aacadf
  • Satchler, G. R., & Love, W. G. (1979). Folding model potentials from realistic interactions for heavy-ion scattering. Physics Reports, 55(3), 183-254. https://doi.org/10.1016/0370-1573(79)90081-4
  • RIPL-3 (2021, May 23). Reference Input Parameter Library. http://www-nds.iaea.org/RIPL-3.
  • Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. Sh., & Talou, P. (2009). RIPL–reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nuclear Data Sheets, 110(12), 3107-3214. https://doi.org/10.1016/j.nds.2009.10.004
  • Farid, M. E. A., & Hassanain, M. A. (2000). Density-independent folding analysis of the 6,7Li elastic scattering at intermediate energies. Nuclear Physics A, 678(1-2), 39-75. https://doi.org/10.1016/S0375-9474(00)00313-4
  • De Jager, C. W., De Vries, H., & De Vries, C. (1974). Nuclear charge-and magnetization-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables, 14(5-6), 479-508. https://doi.org/10.1016/S0092-640X(74)80002-1
  • Hossain, S., Abdullah, M. N. A., Rahman, M. Z., Basak, A. K., & Malik, F. B. (2013). Non-monotonic potentials for 6Li elastic scattering at 88 MeV. Physica Scripta, 87(1), Article 015201. https://doi.org/10.1088/0031-8949/87/01/015201
  • Cook, J. (1982). DFPOT-a program for the calculation of double folded potentials. Computer Physics Communications, 25(2), 125-139.
  • Thompson, I. J. (1988). Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7(4), 167-212. https://doi:10.1016/0167-7977(88)90005-6
  • Eck, J. S., Leigh, J. R., Ophel, T. R., & Clark, P. D. (1980). Total fusion cross section for the 9Be + 28Si system. Physical Review C, 21(6), Article 2352. https://doi.org/10.1103/PhysRevC.21.2352
  • Moraes, S. B., Gomes, P. R. S, Lubian, J., Alves, J. J. S., Anjos, R. M., SantAnna, M. M., Padrn, I., Muri, C., Liguori, Neto, R., & Added, N. (2000). Fusion and elastic scattering of 9Be+ 64Zn: a search of the breakup influence on these processes. Physical Review C, 61(6), Article 064608. https://doi.org/10.1103/PhysRevC.61.064608
  • Gomes, P. R. S., Padron, I., Crema, E., Capurro, O., Fernández, Niello, J. O., Arazi, A., Martí, G.V., Lubian, J., Trotta, M., Pacheco, A., Testoni, J. E., Rodríguez, M. D., Ortega, M. E., Chamon, L., Anjos, R.M., Veiga, R., Dasgupta, M., Hinde, D. J., & Hagino, K. (2006). Comprehensive study of reaction mechanisms for the 9Be + 144Sm system at near-and sub-barrier energies. Physical Review C, 73(6), Article 064606. https://doi.org/10.1103/PhysRevC.73.064606
  • Kharab, R., & Kumari, A. (2019). Influence of projectile breakup on fusion reactions induced by 9Be at near barrier energies. Nuclear Physics A, 981, 62-74. https://doi.org/10.1016/j.nuclphysa.2018.10.081
  • Dasgupta, M., Hinde, D. J., Sheehy, S. L., & Bouriquet, B. (2010). Suppression of fusion by breakup: Resolving the discrepancy between the reactions of 9Be with 208Pb and 209Bi. Physical Review C, 81(2), Article 024608. https://doi.org/10.1103/PhysRevC.81.024608
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Murat Aygun 0000-0002-4276-3511

Yayımlanma Tarihi 11 Haziran 2021
Gönderilme Tarihi 10 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 1

Kaynak Göster

APA Aygun, M. (2021). Analysis of 9Be Fusion Cross Sections via a Simple Cluster Model. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(1), 33-41. https://doi.org/10.33484/sinopfbd.857418