Araştırma Makalesi
BibTex RIS Kaynak Göster

Ucuz Bir Adsorbent İle Metil Mavisinin Giderimi: Optimizasyon, ANOVA Analizi

Yıl 2022, Cilt: 7 Sayı: 1, 71 - 80, 29.06.2022
https://doi.org/10.33484/sinopfbd.1098225

Öz

Bu çalışmada Kars ilinden elde edilen yerel kil kullanılarak metil mavisinin adsorpsiyonu incelenmiş ve Taguchi metodu (ortogonal L9 tasarım matrisi) ile parametreler optimize edilmiştir. Burada sıcaklık (20-25-30°C), boyar madde konsantrasyonu (80-120-160 mg/L) ve adsorbent miktarı (0.04-0.08-0.12 g) adsorpsiyona etki eden parametreler olarak seçilmiştir. Çalışmada metil mavisinin %98.6’sı kil üzerine adsorplanarak giderilmiştir. Bu giderimin sağlandığı optimum şartlar; sıcaklığın 20°C, konsantrasyonun 80 mg/L ve adsorbent miktarının 0.12 g olduğu seviyelerdir. Parametrelerin etkisini gözlemlemek için yapılan ANOVA analizinde en etkili parametrenin adsorbent miktarının olduğu ardından konsantrasyonun geldiği, sıcaklığın ise etkisiz olduğu görülmüştür. Aynı çalışma birim adsorbent başına adsorplanan metil mavisi miktarı üzerinden de optimize edilmiştir. Burada ise sıcaklığın 20°C, konsantrasyonun 160 mg/L ve adsorbent miktarının 0.04 g olduğu seviyeler optimum seviyeler olarak tespit edilmiştir. ANOVA analizinden konsantrasyon ve adsorbent miktarının adsorpsiyon üzerine etkilerinin birbirine yakın olduğu görülmüş, sıcaklığın ise adsorpsiyon üzerinde etkisiz olduğu gözlenmiştir. Belirlenen optimum şartlar da yapılan deneylerde birim adsorbent başına adsorplanan boyar madde miktarı, qt=87.33 mg/g olarak hesaplanmıştır.

Kaynakça

  • Lacin, O., Haghighatnia, A., Demir, F., & Sevim, F. (2019). Adsorption characteristics and behaviors of natural red clay for removal of by28 from aqueous solutions. International Journal of Trend in Scientific Research and Development, 3(2), 1037–1047. https://doi.org/10.31142/ijtsrd21544
  • Balçik Canbolat, Ç., & Özbey, B. (2021). Sulu çözeltilerden organik boyaların giderimi için sellüloz nanokristal katkılı aljinat adsorbanın geliştirilmesi ve boya giderim veriminin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(1), 300–308. https://doi.org/10.29130/dubited.801179
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., & Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356. https://doi.org/10.1016/j.psep.2017.03.008
  • Sevim, F., Lacin, O., Ediz, E. F., & Demir, F. (2021). Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environmental Progress & Sustainable Energy, 40(1), e13471. https://doi.org/10.1002/ep.13471
  • Mouni, L., Belkhiri, L., Bollinger, J.-C., Bouzaza, A., Assadi, A., Tirri, A., & Remini, H. (2018). Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Applied Clay Science, 153, 38–45. https://doi.org/10.1016/j.clay.2017.11.034
  • Namal, O. O., & Kalipci, E. (2019). Adsorption kinetics of methylene blue using alkali and microwave-modified apricot stones. Separation Science and Technology, 54(11), 1722–1738. https://doi.org/10.1080/01496395.2018.1541469
  • Patra, B. R., Mukherjee, A., Nanda, S., & Dalai, A. K. (2021). Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters, 19(3), 2237–2259. https://doi.org/10.1007/s10311-020-01165-9
  • Solisio, C., & Aliakbarian, B. (2017). Methylene blue adsorption using chabazite: Kinetics and equilibrium modelling. The Canadian Journal of Chemical Engineering, 95(9), 1760–1767. https://doi.org/10.1002/cjce.22838
  • Li, J., Cai, J., Zhong, L., Cheng, H., Wang, H., & Ma, Q. (2019). Adsorption of reactive red 136 onto chitosan/montmorillonite intercalated composite from aqueous solution. Applied Clay Science, 167, 9–22. https://doi.org/10.1016/j.clay.2018.10.003
  • Zolgharnein, J., & Rastgordani, M. (2018). Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. Journal of Molecular Liquids, 262, 405–414. https://doi.org/10.1016/j.molliq.2018.04.038
  • Rezaei, H., Haghshenasfard, M., & Moheb, A. (2017). Optimization of dye adsorption using Fe3O4 nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science & Technology, 35(1–2), 55–71. https://doi.org/10.1177/0263617416667508
  • Elizalde-González, M. P., & García-Díaz, L. E. (2010). Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 163(1), 55–61. https://doi.org/10.1016/j.cej.2010.07.040
  • Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere, 285, 131531. https://doi.org/10.1016/j.chemosphere.2021.131531
  • Kavcı, E. (2021). Adsorption of direct red 243 dye onto clay: kinetic study and isotherm analysis. Desalination and Water Treatment, 212, 452–461. https://doi.org/10.5004/dwt.2021.26861
  • Bilgin, A., & Ateş, E. (2021). Pb(II) Adsorption on Eastern Spruce Sawdust (Turkey) by applying Taguchi Method and adsorption ısotherms. Water, Air, & Soil Pollution, 232(11), 470. https://doi.org/10.1007/s11270-021-05410-x
  • Moralı, U., Demiral, H., & Şensöz, S. (2018). Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602–611. https://doi.org/10.1016/j.jclepro.2018.04.084
  • Yildiz, Y. Ş. (2008). Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes. Journal of Hazardous Materials, 153(1), 194–200. https://doi.org/10.1016/j.jhazmat.2007.08.034
  • Serencam, H., & Uçurum, M. (2019). Yeşil bayburt taşının adsorban olarak kullanılabilirliğinin istatistiksel deney tasarımı ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 352–361. https://doi.org/10.28948/ngumuh.517139
  • Karmakar, B., Dhawane, S. H., & Halder, G. (2018). Optimization of biodiesel production from castor oil by Taguchi design. Journal of Environmental Chemical Engineering, 6(2), 2684–2695. https://doi.org/10.1016/j.jece.2018.04.019
  • Santra, D., Joarder, R., & Sarkar, M. (2014). Taguchi design and equilibrium modeling for fluoride adsorption on cerium loaded cellulose nanocomposite bead. Carbohydrate Polymers, 111, 813–821. https://doi.org/10.1016/j.carbpol.2014.05.040
  • Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1), 117–125. https://doi.org/10.1016/j.desal.2010.10.007
  • Fernández-López, J. A., Angosto, J. M., Roca, M. J., & Doval Miñarro, M. (2019). Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Science of the Total Environment, 653, 55–63. https://doi.org/10.1016/j.scitotenv.2018.10.343
  • Rahmani, M., Kaykhaii, M., & Sasani, M. (2018). Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 164–169. https://doi.org/10.1016/j.saa.2017.06.070
  • Yusuff, A. S., Ajayi, O. A., & Popoola, L. T. (2021). Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Scientific African, 13, e00850. https://doi.org/10.1016/j.sciaf.2021.e00850
  • Korake, S. R., & Jadhao, P. D. (2021). Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon, 7(1), e05755. https://doi.org/10.1016/j.heliyon.2020.e05755
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Roufegari-Nejhad, E., Sirousazar, M., Abbasi-Chiyaneh, V., & Kheiri, F. (2019). Removal of Methylene Blue from Aqueous Solutions Using Poly(vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization. Journal of Polymers and the Environment, 27(10), 2239–2249. https://doi.org/10.1007/s10924-019-01514-y
  • Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2019). A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high-efficient removal of methylene blue: parameter optimization using Taguchi experimental design. Journal of Chemical Technology & Biotechnology, 94(8), 2729–2737. https://doi.org/10.1002/jctb.6089
  • Essa, W. K., Yasin, S. A., Abdullah, A. H., Thalji, M. R., Saeed, I. A., Assiri, M. A., Ali, G. A. M. (2022). Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water, 14(8), 1242. https://doi.org/10.3390/w14081242
  • Gupta, T. B., & Lataye, D. H. (2018). Adsorption of indigo carmine and methylene blue dye: Taguchi’s design of experiment to optimize removal efficiency. Sādhanā, 43(10), 170. https://doi.org/10.1007/s12046-0

Removal of Methylene Blue Using A Cheap Adsorbent: Optimization, ANOVA analysis

Yıl 2022, Cilt: 7 Sayı: 1, 71 - 80, 29.06.2022
https://doi.org/10.33484/sinopfbd.1098225

Öz

In this study, methylene blue adsorption was investigated using clay found locally in the Kars region. The temperature, dye concentration, and amount of adsorbent that can affect the adsorption were optimized by the Taguchi method. L9 orthogonal experimental design matrix was used in the design. Here, temperature (20-25-30°C), the concentration of dye (80-120-160 mg/L), and the amount of adsorbent (0.04-0.08-0.12 g) were selected as parameters affecting adsorption. In the study, 98.6% of methylene blue was removed. The optimum conditions for the removal of methylene blue are the temperature of 20°C of the temperature, 80 mg/L of the concentration, and 0.12 g of the amount of adsorbent. From the ANOVA analysis performed to observe the effect of the parameters, it was seen that the amount of adsorbent was the most effective parameter, then the concentration was effective and the temperature was ineffective. The same study was also optimized on the amount of methylene blue adsorbed per unit adsorbent. The optimum levels of temperature, concentration, and amount of adsorbent were determined as 20°C, 160 mg/L, and 0.04g, respectively. According to ANOVA analysis, it was observed that the concentration and amount of adsorbent had approximately the same effect, while the temperature was ineffective on adsorption. In the experiments carried out under optimum conditions, the value of qt=87.33 mg/g was reached.

Kaynakça

  • Lacin, O., Haghighatnia, A., Demir, F., & Sevim, F. (2019). Adsorption characteristics and behaviors of natural red clay for removal of by28 from aqueous solutions. International Journal of Trend in Scientific Research and Development, 3(2), 1037–1047. https://doi.org/10.31142/ijtsrd21544
  • Balçik Canbolat, Ç., & Özbey, B. (2021). Sulu çözeltilerden organik boyaların giderimi için sellüloz nanokristal katkılı aljinat adsorbanın geliştirilmesi ve boya giderim veriminin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(1), 300–308. https://doi.org/10.29130/dubited.801179
  • Manna, S., Roy, D., Saha, P., Gopakumar, D., & Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356. https://doi.org/10.1016/j.psep.2017.03.008
  • Sevim, F., Lacin, O., Ediz, E. F., & Demir, F. (2021). Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environmental Progress & Sustainable Energy, 40(1), e13471. https://doi.org/10.1002/ep.13471
  • Mouni, L., Belkhiri, L., Bollinger, J.-C., Bouzaza, A., Assadi, A., Tirri, A., & Remini, H. (2018). Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Applied Clay Science, 153, 38–45. https://doi.org/10.1016/j.clay.2017.11.034
  • Namal, O. O., & Kalipci, E. (2019). Adsorption kinetics of methylene blue using alkali and microwave-modified apricot stones. Separation Science and Technology, 54(11), 1722–1738. https://doi.org/10.1080/01496395.2018.1541469
  • Patra, B. R., Mukherjee, A., Nanda, S., & Dalai, A. K. (2021). Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters, 19(3), 2237–2259. https://doi.org/10.1007/s10311-020-01165-9
  • Solisio, C., & Aliakbarian, B. (2017). Methylene blue adsorption using chabazite: Kinetics and equilibrium modelling. The Canadian Journal of Chemical Engineering, 95(9), 1760–1767. https://doi.org/10.1002/cjce.22838
  • Li, J., Cai, J., Zhong, L., Cheng, H., Wang, H., & Ma, Q. (2019). Adsorption of reactive red 136 onto chitosan/montmorillonite intercalated composite from aqueous solution. Applied Clay Science, 167, 9–22. https://doi.org/10.1016/j.clay.2018.10.003
  • Zolgharnein, J., & Rastgordani, M. (2018). Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. Journal of Molecular Liquids, 262, 405–414. https://doi.org/10.1016/j.molliq.2018.04.038
  • Rezaei, H., Haghshenasfard, M., & Moheb, A. (2017). Optimization of dye adsorption using Fe3O4 nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science & Technology, 35(1–2), 55–71. https://doi.org/10.1177/0263617416667508
  • Elizalde-González, M. P., & García-Díaz, L. E. (2010). Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 163(1), 55–61. https://doi.org/10.1016/j.cej.2010.07.040
  • Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere, 285, 131531. https://doi.org/10.1016/j.chemosphere.2021.131531
  • Kavcı, E. (2021). Adsorption of direct red 243 dye onto clay: kinetic study and isotherm analysis. Desalination and Water Treatment, 212, 452–461. https://doi.org/10.5004/dwt.2021.26861
  • Bilgin, A., & Ateş, E. (2021). Pb(II) Adsorption on Eastern Spruce Sawdust (Turkey) by applying Taguchi Method and adsorption ısotherms. Water, Air, & Soil Pollution, 232(11), 470. https://doi.org/10.1007/s11270-021-05410-x
  • Moralı, U., Demiral, H., & Şensöz, S. (2018). Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602–611. https://doi.org/10.1016/j.jclepro.2018.04.084
  • Yildiz, Y. Ş. (2008). Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes. Journal of Hazardous Materials, 153(1), 194–200. https://doi.org/10.1016/j.jhazmat.2007.08.034
  • Serencam, H., & Uçurum, M. (2019). Yeşil bayburt taşının adsorban olarak kullanılabilirliğinin istatistiksel deney tasarımı ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 352–361. https://doi.org/10.28948/ngumuh.517139
  • Karmakar, B., Dhawane, S. H., & Halder, G. (2018). Optimization of biodiesel production from castor oil by Taguchi design. Journal of Environmental Chemical Engineering, 6(2), 2684–2695. https://doi.org/10.1016/j.jece.2018.04.019
  • Santra, D., Joarder, R., & Sarkar, M. (2014). Taguchi design and equilibrium modeling for fluoride adsorption on cerium loaded cellulose nanocomposite bead. Carbohydrate Polymers, 111, 813–821. https://doi.org/10.1016/j.carbpol.2014.05.040
  • Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1), 117–125. https://doi.org/10.1016/j.desal.2010.10.007
  • Fernández-López, J. A., Angosto, J. M., Roca, M. J., & Doval Miñarro, M. (2019). Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Science of the Total Environment, 653, 55–63. https://doi.org/10.1016/j.scitotenv.2018.10.343
  • Rahmani, M., Kaykhaii, M., & Sasani, M. (2018). Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 164–169. https://doi.org/10.1016/j.saa.2017.06.070
  • Yusuff, A. S., Ajayi, O. A., & Popoola, L. T. (2021). Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Scientific African, 13, e00850. https://doi.org/10.1016/j.sciaf.2021.e00850
  • Korake, S. R., & Jadhao, P. D. (2021). Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon, 7(1), e05755. https://doi.org/10.1016/j.heliyon.2020.e05755
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Roufegari-Nejhad, E., Sirousazar, M., Abbasi-Chiyaneh, V., & Kheiri, F. (2019). Removal of Methylene Blue from Aqueous Solutions Using Poly(vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization. Journal of Polymers and the Environment, 27(10), 2239–2249. https://doi.org/10.1007/s10924-019-01514-y
  • Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2019). A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high-efficient removal of methylene blue: parameter optimization using Taguchi experimental design. Journal of Chemical Technology & Biotechnology, 94(8), 2729–2737. https://doi.org/10.1002/jctb.6089
  • Essa, W. K., Yasin, S. A., Abdullah, A. H., Thalji, M. R., Saeed, I. A., Assiri, M. A., Ali, G. A. M. (2022). Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water, 14(8), 1242. https://doi.org/10.3390/w14081242
  • Gupta, T. B., & Lataye, D. H. (2018). Adsorption of indigo carmine and methylene blue dye: Taguchi’s design of experiment to optimize removal efficiency. Sādhanā, 43(10), 170. https://doi.org/10.1007/s12046-0
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Erbil Kavcı 0000-0001-6519-9901

Yayımlanma Tarihi 29 Haziran 2022
Gönderilme Tarihi 4 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 1

Kaynak Göster

APA Kavcı, E. (2022). Ucuz Bir Adsorbent İle Metil Mavisinin Giderimi: Optimizasyon, ANOVA Analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 7(1), 71-80. https://doi.org/10.33484/sinopfbd.1098225


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.