Experimental Study on the Pull-Out Capacity of Blind Rivet Nuts (BRNs) Mounted on Cold-Formed Square Hollow Section Members with Different Wall Thickness
Yıl 2023,
Cilt: 8 Sayı: 2, 202 - 215, 28.12.2023
Suleyman Istemihan Cosgun
Öz
In this study, pull-out tests of blind rivet nuts (BRNs) mounted on cold-formed square hollow section (SHS) webs with 100×100 mm nominal cross-section dimensions and different wall thicknesses (2.0 to 5.0 mm) were performed, and the effect of different wall thicknesses and BRN thread sizes on the test results was experimentally investigated. M10 and M12 stainless steel BRNs were mounted on SHSs using a standard riveter tool, and the test elements were prepared for the experiment. Load–displacement curves and the final damage modes were obtained for each test specimen. The results show that the pull-out capacity depends on both the SHS wall thickness and rivet nut thread size. Although the pull-out capacity increased in both thread sizes with the increase in wall thickness parameters, the effect of thread size is negligible in the case of 2.5, 3.0, and 4.0 wall thickness. In addition, when a connection is created using a BRN, the design should consider the stripped thread strength in addition to the pull-out capacity.
Etik Beyan
The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Destekleyen Kurum
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Kaynakça
- Heiler, R. (2019). Flow drilling technology and thread forming - an economical and secure connection in hollow sections and thin-walled components. E3S Web of Conferences, 97, 06033. https://doi.org/10.1051/e3sconf/20199706033
- Hassanifard, S., Adibeig, M., Mohammadpour, M., & Varvani-Farahani, A. (2019). Fatigue life of axially loaded clamped rivet-nut joints: Experiments and analyses. International Journal of Fatigue, 129, 105254. https://doi.org/10.1016/j.ijfatigue.2019.105254
- Borowiecki, C., Iluk, A., Krysiński, P., Rusiński, E., & Sawicki, M. (2019, January 1). Numerical and Experimental Investigation of Bolted Connections with Blind Rivet Nuts. Lecture Notes in Mechanical Engineering. https://doi.org/10.1007/978-3-030-04975-1_11
- Van de Velde, A., Coppieters, S., Maeyens, J., Wevers, M., & Debruyne, D. (2019). On the numerical prediction of the torque-to-turn-value of a blind rivet nut. International Journal of Material Forming, 13(1), 127–141. https://doi.org/10.1007/s12289-019-01476-5
- Studziński, R. (2021). Analytical models of axially loaded blind rivets used with sandwich beams. Energies, 14(3), 579. https://doi.org/10.3390/en14030579
- Van de Velde, A., Ivens, J., Maeyens, J., & Coppieters, S. (2022). The effect of the setting force on the fatigue resistance of a blind rivet nut set in CFRP. Key Engineering Materials, 926, 1498–1504. https://doi.org/10.4028/p-4w99oa
- Van de Velde, A., Maeyens, J., Ivens, J., & Coppieters, S. (2023). The effect of the setting force on the static strength of a blind rivet nut set in CFRP. Composite Structures, 307, 116640. https://doi.org/10.1016/j.compstruct.2022.116640
- Kim, C., Gu, B., Yi, S., Choi, J. M., & Hong, S. (2020). Accurate Fastening of Blind Rivet Nuts: A Study. Transactions of Materials Processing, 29(6), 331–337. https://doi.org/10.5228/KSTP.2020.29.6.331
- Gu, B., Choi, J. M., & Hong, S. (2020). Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis. Transactions of Materials Processing, 29(3), 157–162. https://doi.org/10.5228/KSTP.2020.29.3.157
- American Society for Testing and Materials. (2014). Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM A370-14.
- Alcoa Marson Rivet Nut Installation Tool Kit with Inch Mandrels. (n.d.). DMSeeleysTools.com. https://dmseeleystools.com/alcoa-marson-rivet-nut-installation-tool-kit-with-inch-mandrels/
- Beek, A. van. (2019). Advanced Engineering Design: Lifetime Performance and Reliability. TU Delft.
- Juvinall, R. C., & Marshek, K. M. (2020, June 23). Fundamentals of Machine Component Design. John Wiley & Sons
Farklı Et Kalınlıklarına Sahip Soğuk Şekillendirilmiş Kare İçi Boş Kesitli Elemanlara Monte Edilen Kör Perçin Somunlarının (BRN'ler) Çekme Kapasitesi Üzerine Deneysel Çalışma
Yıl 2023,
Cilt: 8 Sayı: 2, 202 - 215, 28.12.2023
Suleyman Istemihan Cosgun
Öz
Bu çalışmada, 100x100 mm nominal kesit boyutlarına sahip farklı et kalınlıklarındaki (2.0 ile 5.0 mm) soğuk şekillendirilmiş kare içi boş profil (SHS) gövdelerine monte edilen kör perçin somunlarının (BRN'ler) çekme testleri gerçekleştirilmiş olup farklı duvar kalınlıklarının ve BRN diş boyutunun test sonuçlarına etkisi deneysel olarak araştırılmıştır. M10 ve M12 paslanmaz çelik BRN'ler standart perçinleme aleti kullanılarak SHS'lere monte edilmiş ve deney için test elemanları hazırlanmıştır. Her test numunesi için yük-yer değiştirme eğrileri ve nihai hasar modları elde edilmiştir. Sonuçlar, çekme kapasitesinin hem SHS duvar kalınlığına hem de perçin somunu diş boyutuna bağlı olduğunu göstermektedir. Her iki diş boyutunda da et kalınlığı parametrelerinin artmasıyla çekme kapasitesi artmasına rağmen, 2.5, 3.0 ve 4.0 et kalınlığı durumunda diş boyutunun etkisi ihmal edilebilir düzeydedir. Ayrıca, BRN kullanılarak bir bağlantı oluşturulduğunda, tasarımda çekme kapasitesinin yanı sıra BRN'lerin dişlerinin sıyrılma mukavemeti de dikkate alınmalıdır.
Kaynakça
- Heiler, R. (2019). Flow drilling technology and thread forming - an economical and secure connection in hollow sections and thin-walled components. E3S Web of Conferences, 97, 06033. https://doi.org/10.1051/e3sconf/20199706033
- Hassanifard, S., Adibeig, M., Mohammadpour, M., & Varvani-Farahani, A. (2019). Fatigue life of axially loaded clamped rivet-nut joints: Experiments and analyses. International Journal of Fatigue, 129, 105254. https://doi.org/10.1016/j.ijfatigue.2019.105254
- Borowiecki, C., Iluk, A., Krysiński, P., Rusiński, E., & Sawicki, M. (2019, January 1). Numerical and Experimental Investigation of Bolted Connections with Blind Rivet Nuts. Lecture Notes in Mechanical Engineering. https://doi.org/10.1007/978-3-030-04975-1_11
- Van de Velde, A., Coppieters, S., Maeyens, J., Wevers, M., & Debruyne, D. (2019). On the numerical prediction of the torque-to-turn-value of a blind rivet nut. International Journal of Material Forming, 13(1), 127–141. https://doi.org/10.1007/s12289-019-01476-5
- Studziński, R. (2021). Analytical models of axially loaded blind rivets used with sandwich beams. Energies, 14(3), 579. https://doi.org/10.3390/en14030579
- Van de Velde, A., Ivens, J., Maeyens, J., & Coppieters, S. (2022). The effect of the setting force on the fatigue resistance of a blind rivet nut set in CFRP. Key Engineering Materials, 926, 1498–1504. https://doi.org/10.4028/p-4w99oa
- Van de Velde, A., Maeyens, J., Ivens, J., & Coppieters, S. (2023). The effect of the setting force on the static strength of a blind rivet nut set in CFRP. Composite Structures, 307, 116640. https://doi.org/10.1016/j.compstruct.2022.116640
- Kim, C., Gu, B., Yi, S., Choi, J. M., & Hong, S. (2020). Accurate Fastening of Blind Rivet Nuts: A Study. Transactions of Materials Processing, 29(6), 331–337. https://doi.org/10.5228/KSTP.2020.29.6.331
- Gu, B., Choi, J. M., & Hong, S. (2020). Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis. Transactions of Materials Processing, 29(3), 157–162. https://doi.org/10.5228/KSTP.2020.29.3.157
- American Society for Testing and Materials. (2014). Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM A370-14.
- Alcoa Marson Rivet Nut Installation Tool Kit with Inch Mandrels. (n.d.). DMSeeleysTools.com. https://dmseeleystools.com/alcoa-marson-rivet-nut-installation-tool-kit-with-inch-mandrels/
- Beek, A. van. (2019). Advanced Engineering Design: Lifetime Performance and Reliability. TU Delft.
- Juvinall, R. C., & Marshek, K. M. (2020, June 23). Fundamentals of Machine Component Design. John Wiley & Sons