Derleme
BibTex RIS Kaynak Göster

Carbon Fiber and Its Composites: Synthesis, Properties, Applications

Yıl 2024, Cilt: 9 Sayı: 1, 240 - 265, 29.06.2024
https://doi.org/10.33484/sinopfbd.1393364

Öz

Carbon fiber is often preferred in composite production as it is a light and strong material. Traditionally, it is produced based on Polyacrylonitrile (PAN) and Pitch. Today, biomass-based carbon fiber production has studied as an alternative to these petroleum-based initiators. Accordingly, cotton, wood, and cellulose are the most commonly used biomass types. However, environment-friendly carbon fiber does not yet possess as good tensile strength as petroleum-based ones. So, researchers added PAN during the production of bio-based carbon fiber. Carbon fiber can be produced as a composite with many materials like polymers, metals, ceramics, and cement. It has a wide range of uses. Nowadays, researchers try to improve the interface between epoxy and carbon fiber to increase the functional properties of the composite. By preparing carbon fiber-reinforced metal, it can be possible to use composite as a catalyst. Carbon fiber is used as filler in concrete production to avoid crack formation and thus, carbon fiber composites are crucial in preventing earthquake disasters. In brief, one can enable comprehensive and contemporary information about the synthesis and applications of all types of carbon fibers (PAN, Pitch, bio-based) and their composites (polymer, metal, ceramic, concrete, carbon nanotube, and graphene).

Kaynakça

  • Huang, X. (2009). Fabrication and properties of carbon fibers. Materials, 2, 2369–403. https://doi.org/10.3390/ma2042369
  • Jang, D., Lee, M. E., Choi, J., Cho, S. Y., & Lee, S. (2022). Strategies for the production of PAN-Based carbon fibers with high tensile strength. Carbon, 186, 644–77. https://doi.org/10.1016/j.carbon.2021.10.061
  • Chand, S. (2000). Review Carbon fibers for composites. Journal of Materials Science, 35, 1303-13. https://doi.org/10.1023/A:1004780301489
  • de Souza Abreu, F., Ribeiro, C.C., da Silva Pinto, J.D., Nsumbu, T.M., & Buono, V.T.L. (2020). Influence of adding discontinuous and dispersed carbon fiber waste on concrete performance. Journal of Cleaner Production, 273, 122920.https://doi.org/10.1016/j.jclepro.2020.122920
  • Trademap page forworldwide imported carbon fiber derivatives amount in 2022. (2023, November 21).https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c6815%7c%7c%7c4%7c1%7c1%7c1%7c1%7c%7c2%7c1%7c1%7c1
  • Trademap page for worldwide exported carbon fiber derivatives amount in 2022. (2023, November 21).https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c6815%7c%7c%7c4%7c1%7c1%7c2%7c1%7c%7c2%7c1%7c1%7c1
  • Ogale, A. A., Zhang, M., & Jin, J. (2016). Recent advances in carbon fibers derived from biobased precursors. Journal of Applied Polymer Science, 133(45). https://doi.org/10.1002/app.43794
  • Huang, C., Su, Y., Gong, H., Jiang, Y., Chen, B., Xie, Z., Zhou, J., & Li, Y. (2024). Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. International Journal of Biological Macromolecules, 256, 127878. https://doi.org/10.1016/j.ijbiomac.2023.127878
  • Liu, X., Hou, G., Zhao, J., Zhao, W., Xu, Q., Zheng, X., Liu, Z., & Lai, Y. (2023). Self-interlocked down Biomass-based carbon fiber aerogel for highly efficient and stable solar steam generation. Chemical Engineering Journal, 465, 142826. https://doi.org/10.1016/j.cej.2023.142826
  • Wang, Y., Li, S., Hou, C., Jing, L., Ren, R., Ma, L., Wang, X., & Wang, J. (2022). Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Separation and Purification Technology, 282, 12005. https://doi.org/10.1016/j.seppur.2021.120059
  • Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326. https://doi.org/10.1016/j.dt.2018.02.001
  • Zheng, X., Kim, B. R., Hong, S. J., Lee, J. G., & Park, C. W. (2024). Heat transfer analysis of carbon fiber-reinforced corrugated polymer plate heat exchangers. Applied Thermal Engineering, 244, 122684. https://doi.org/10.1016/j.applthermaleng.2024.122684
  • Abbas, S., & Park, C. W. (2024). Machine learning based frost thickness prediction of carbon fiber-reinforced polymer composite fin for potential heat pump application. International Communications in Heat and Mass Transfer, 153, 107333. https://doi.org/10.1016/j.icheatmasstransfer.2024.107333
  • Heidarian, P., Mokhtari, F., Naebe, M., Henderson, L. C., & Varley, R. J. (2024). Reclamation and reformatting of waste carbon fibers: A paradigm shift towards sustainable waste management. Resources, Conservation and Recycling, 203, 107465. https://doi.org/10.1016/j.resconrec.2024.107465
  • Sayed, E. T., Olabi, A. G., Mouselly, M., Alawadhi, H., & Abdelkareem, M. A. (2024). Zinc-based metal organic framework on carbon fiber brush as a novel anode of yeast-based microbial fuel cell. International Journal of Hydrogen Energy, 52, 856-864. https://doi.org/10.1016/j.ijhydene.2023.06.016
  • Guo, Z. X., Shi, H. L., Ma, S. G., Cui, J. J., Chai, G. B., & Li, Y. C. (2024). An analysis of tensile and compressive properties of carbon fiber high-entropy alloy composite laminates. Mechanics of Composite Materials, 59(6), 1147-1156. https://doi.org/10.1007/s11029-023-10162-2
  • Saravanan, L., Anand, P., Fu, Y. P., Ma, Y. R., & Yeh, W. C. (2024). Enhancing the hydrogen evolution performance of tungsten diphosphide on carbon fiber through ruthenium modification. ACS Applied Materials & Interfaces, 16(10), 12407-12416. https://doi.org/10.1021/acsami.3c17114
  • Tavasolikejani, S., Hosseini, S. M., Ghiaci, M., Vangijzegem, T., & Laurent, S. (2024). Copper nanoparticles embedded into nitrogen-doped carbon fiber felt as recyclable catalyst for benzene oxidation under mild conditions. Molecular Catalysis, 553, 113736. https://doi.org/10.1016/j.mcat.2023.113736
  • Li, M., Xing, F., Li, T., Wang, S., Gu, Y., Zhang, W., Wang, Y., & Li, Q. (2023). Multiscale interfacial enhancement of surface grown carbon nanotubes carbon fiber composites. Polymer Composites, 44(5), 2766-2777. https://doi.org/10.1002/pc.27278
  • Li, N., Cheng, S., Wang, B., Zong, L., Bao, Q., Wu, G., Hu, F., Wang, J., Liu, C., & Jian, X. (2023). Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: a step closer to industrial production. Composites Science and Technology, 231, 109822. https://doi.org/10.1016/j.compscitech.2022.109822
  • Zhu, T., & Wang, Z. (2023). Research and application prospect of short carbon fiber reinforced ceramic composites. Journal of the European Ceramic Society, 43(15), 6699-6717. https://doi.org/10.1016/j.jeurceramsoc.2023.07.007
  • Zhao, F., Shi, Z., Li, Q., Yu, S., & Liu, M. (2024). A comprehensive performance evaluation and optimization of steel/carbon fiber-reinforced eco-efficient concrete (FREC) utilizing multi-mechanical indicators. Journal of Cleaner Production, 441, 140993. https://doi.org/10.1016/j.jclepro.2024.140993
  • Zhou, Z., Zhao, B., Lone, U. A., & Fan, Y. (2024). Experimental study on mechanical properties of shredded prepreg carbon cloth waste fiber reinforced concrete. Journal of Cleaner Production, 436, 140456. https://doi.org/10.1016/j.jclepro.2023.140456
  • Tanaka, F., Ishikawa, T., & Tane, M. (2024). A comprehensive review of the elastic constants of carbon fibers: implications for design and manufacturing of high-performance composite materials. Advanced Composite Materials, 33(2), 269-289. https://doi.org/10.1080/09243046.2023.2245210
  • Song, X., Yu, M., Niu, H., Li, Y., Chen, C., Zhou, C., Liu, L., & Wu, G. (2024). Poly (methyl dihydroxybenzoate) modified waterborne polyurethane sizing coatings with chemical and hydrogen-bonded complex cross-linking structures for improving the surface wettability and mechanical properties of carbon fiber. Progress in Organic Coatings, 187, 108112. https://doi.org/10.1016/j.porgcoat.2023.108112
  • Ismail, K. B. M., Kumar, M. A., Mahalingam, S., Raj, B., & Kim, J. (2024). Carbon fiber-reinforced polymers for energy storage applications. Journal of Energy Storage, 84, 110931. https://doi.org/10.1016/j.est.2024.110931
  • Chen, J., Zheng, J., Wang, F., Huang, Q., Ji, G. (2021). Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon, 74, 509-517. https://doi.org/10.1016/j.carbon.2020.12.077
  • Šahmenko, G., Krasnikovs, A., Lukašenoks, A., & Eiduks, M. (2015). Ultra high performance concrete reinforced with short steel and carbon fibers. Envıronment Technologıes Resources, 1, 193-199. https://doi.org/10.17770/etr2015vol1.196
  • Adeniran, O., Cong, W., & Aremu, A. (2022). Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Composites: A state-of-the-art review. Advances in Industrial and Manufacturing Engineering, 5, 100100.https://doi.org/10.1016/j.aime.2022.100100
  • Shirvanimoghaddam, K., Hamim, S.U., Akbari, M.K., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., & Naebe, M. (2017). Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032
  • Frank, E., Ingildeev, D., & Buchmeiser, M. R. (2017). High-performance PAN-based carbon fibers and their performance requirements. In Gajanan Bhat (Ed), Structure and Properties of High-Performance Fibers, (pp. 7–30). https://doi.org/10.1016/B978-0-08-100550-7.00002-4
  • Park, S. W., Yang, S. S., & Park, S. H. (1999). The kinetics of radical copolymerization of acrylonitrile and methylacrylate with tricaprylylmethylammonium chloride as a phase‐transfer catalyst. Journal of Polymer Science Part A: Polymer Chemistry, 37(17), 3504-3512. https://doi.org/10.1002/(SICI)1099-0518(19990901)37:17<3504::AID-POLA8>3.0.CO;2-L
  • Parts, A. G. (1959). Polymerization kinetics of acrylonitrile. Journal of Polymer Science, 37(131), 131-145. https://doi.org/10.1002/pol.1959.1203713109
  • Fordham, J. W. L., & Williams, H. L. (1951). The persulfate-iron (II) initiator system for free radical polymerizations1. Journal of the American Chemical Society, 73(10), 4855-4859. https://doi.org/10.1021/ja01154a114
  • Yan, J., Pan, X., Schmitt, M., Wang, Z., Bockstaller, M. R., & Matyjaszewski, K. (2016). Enhancing initiation efficiency in metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). ACS Macro Letters, 5(6), 661-665.https://doi.org/10.1021/acsmacrolett.6b00295
  • Hao, J., An, F., Lu, C., & Liu, Y. (2019). Solvent effects on radical copolymerization of acrylonitrile and methyl acrylate: solvent polarity and solvent-monomer interaction. Journal of Macromolecular Science, Part A, 56(11), 1012-1021. https://doi.org/10.1080/10601325.2019.1642767
  • Gao, T., Yan, G., Yang, X., Yan, Q., Tian, Y., & Song, J. (2022). Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. Journal of Energy Chemistry, 71, 192–200. https://doi.org/10.1016/j.jechem.2022.02.040
  • Hamideh Mortazavi, S., Pilehvar, S., Ghoranneviss, M., Hosseinnejad, M. T., Zargham, S., Mirarefi, A. A., & Mirarefi, A. Y. (2013). Plasma oxidation and stabilization of electrospun polyacrylonitrile nanofiber for carbon nanofiber formation. Applied Physics A, 113, 703-712. https://doi.org/10.1007/s00339-013-7707-2
  • Zhang, C., Liu, J., Guo, S., Xiao, S., Shen, Z., & Xu, L. (2018). Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate. Ceramics International, 44(12), 14377-14385. https://doi.org/10.1016/j.ceramint.2018.05.047
  • Shokrani Havigh, R., & Mahmoudi Chenari, H. (2022). A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientific Reports, 12(1), 10704. https://doi.org/10.1038/s41598-022-15085-x
  • Ma, Q. S., Gao, A. J., Tong, Y. J., & Zhang, Z. G. (2016). The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New carbon materials, 31(5), 550-554. https://doi.org/10.1016/S1872-5805(16)60031-8
  • Lee, J. C., Lee, B. H., Kim, B. G., Park, M. J., Lee, D. Y., Kuk, I. H., Chung, H., Kang, H. S., Lee, H. S., & Ahn, D. H. (1997). The effect of carbonization temperature of PAN fiber on the properties of activated carbon fiber composites. Carbon, 35(10-11), 1479-1484. https://doi.org/10.1016/S0008-6223(97)00098-5
  • Athulya Wickramasingha, Y., Dharmasiri, B., Randall, J.D., Yin, Y., Andersson, G.G., & Nepal, D. (2022). Surface modification of carbon fiber as a protective strategy against thermal degradation. Composites Part A Applied Science and Manufacturing, 153, 106740. https://doi.org/10.1016/j.compositesa.2021.106740
  • Naito, K., Yang, J.M., Xu, Y., & Kagawa, Y. (2010). Enhancing the thermal conductivity of polyacrylonitrile- and pitch-based carbon fibers by grafting carbon nanotubes on them. Carbon, 48(6), 1849–57. https://doi.org/10.1016/j.carbon.2010.01.031
  • Yusof, N., & Ismail, A.F. (2012). Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. Journal of Analytical and Applied Pyrolysis, 93, 1–13.https://doi.org/10.1016/j.jaap.2011.10.001
  • Böhm, R., Thieme, M., Wohlfahrt, D., Wolz, D.S., Richter, B., & Jäger, H. (2018). Reinforcement systems for carbon concrete composites based on low-cost carbon fibers. Fibers, 6(3), 56. https://doi.org/10.3390/fib6030056
  • Liu, J., Chen, X., Liang, D., & Xie, Q. (2020). Development of pitch-based carbon fibers: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 12(12), 3059. https://doi.org/10.1080/15567036.2020.1806952
  • Iowa State University Center for Nondestructive Evaluation. (2024, April 5). Anisotropy and isotropy. https://www.nde-ed.org/Physics/Materials/Structure/anisotropy.xhtml#:~:text=When%20the%20properties%20of%20a,is%20said%20to%20be%20isotropic
  • Ko, S., Choi, J. E., Lee, C. W., & Jeon, Y. P. (2020). Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers. Carbon Letters, 30(1), 35–44. https://doi.org/10.1007/s42823-019-00067-3
  • Kim, B. J., Kotegawa, T., Eom, Y., An, J., Hong, I. P., Kato, O., & Yoon, S. H. (2016). Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 99, 649-657. https://doi.org/10.1016/j.carbon.2015.12.082
  • Xia, G., Wang, H., Zhan, J., Yin, X., Wu, X., Yu, G., & Wu, M. (2020). Evaluation of the stability of polyacrylonitrile-based carbon fiber electrode for hydrogen peroxide production and phenol mineralization during electro-peroxone process. Chemical Engineering Journal, 396, 125291. https://doi.org/10.1016/j.cej.2020.125291
  • Zai, X., Liu, A., Tian, Y., Chai, F., & Fu, Y. (2020). Oxidation modification of polyacrylonitrile-based carbon fiber and ıts electro-chemical performance as marine electrode for electric field test. Journal of Ocean University of China, 19, 361-368. https://doi.org/10.1007/s11802-020-4178-x
  • Deng, N., Peng, Z., Tian, X., Li, Y., Yan, J., Liu, Y., & Kang, W. (2023). Yttrium trifluoride doped polyacrylonitrile based carbon nanofibers as separator coating layer for high performance lithium-metal batteries. Journal of Colloid and Interface Science, 634, 949-962. https://doi.org/10.1016/j.jcis.2022.12.081
  • Li, C., Qian, X., Hao, M., Wang, X., Zhu, S., Guo, M., & Zhang, Y. (2023). Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs. Journal of Alloys and Compounds, 950, 169912. https://doi.org/10.1016/j.jallcom.2023.169912
  • Ma, C., Lu, T., Demir, M., Yu, Q., Hu, X., Jiang, W., & Wang, L. (2022). Polyacrylonitrile-derived N-doped nanoporous carbon fibers for CO2 adsorption. ACS Applied Nano Materials, 5(9), 13473-13481. https://doi.org/10.1021/acsanm.2c03126
  • Matsuzawa, F., Amano, Y., & Machida, M. (2022). Phosphate ion adsorption characteristics of PAN-based activated carbon prepared by zinc chloride activation. International Journal of Environmental Science and Technology, 19, 8159-8168. https://doi.org/10.1007/s13762-021-03695-3
  • Shi, R., Chen, H., Liu, B., Zhou, C., Pi, W., Zeng, Z., & Li, L. (2022). Porous carbon fibers from low-temperature sodium amide activation for acetone adsorption. Materials Chemistry and Physics, 286, 126186. https://doi.org/10.1016/j.matchemphys.2022.126186
  • Hwang, S. H., Kim, Y. K., Seo, H. J., Jeong, S. M., Kim, J., & Lim, S. K. (2021). The enhanced hydrogen storage capacity of carbon fibers: the effect of hollow porous structure and surface modification. Nanomaterials, 11(7), 1830. https://doi.org/10.3390/nano11071830
  • Wu, J., Li, T., Meng, G., Xiang, Y., Hai, J., & Wang, B. (2021). Carbon nanofiber supported Ni–ZnO catalyst for efficient and selective hydrogenation of pyrolysis gasoline. Catalysis Science & Technology, 11(12), 4216-4225. https://doi.org/10.1039/D1CY00548K
  • Yue, Y., Wang, Y., Qu, C., & Xu, X. (2021). Modification of polyacrylonitrile-based activated carbon fibers and their p-nitrophenol adsorption and degradation properties. Journal of Environmental Chemical Engineering, 9(4), 105390. https://doi.org/10.1016/j.jece.2021.105390
  • Patchen, A., Young, S., Goodbred, L., Puplampu, S., Chawla, V., & Penumadu, D. (2023). Lower carbon footprint concrete using recycled carbon fiber for targeted strength and insulation. Materials, 16(15), 5451. https://doi.org/10.3390/ma16155451
  • Zhu, C., Su, Y., Wang, X., Sun, H., Ouyang, Q., & Zhang, D. (2021). Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing. Composites Part B: Engineering, 215, 108746. https://doi.org/10.1016/j.compositesb.2021.108746
  • Park, H. M., Kim, G. M., Lee, S. Y., Jeon, H., Kim, S. Y., & Kim, M. (2018). Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Construction and Building Materials, 165, 484–93. https://doi.org/10.1016/j.conbuildmat.2017.12.205
  • Gan, Q., & Fu, Y. (2023). Emerging dual carbon fiber batteries. Electrochimica Acta, 439, 141597.https://doi.org/10.1016/j.electacta.2022.141597.
  • Wu, Y., Gao, X., Nguyen, T.T., Wu, J., Guo, M., & Liu, W. (2022). Green and low-cost natural lignocellulosic biomass-based carbon fibers—processing, properties, and applications in sports equipment: A review. Polymers, 14, 2591. https://doi.org/10.3390/polym14132591
  • Wei, J., Gao, D., Wang, Y., Miao, Z., & Zhou, Y. (2023). Enhancing thermal conductivity of cement-based composites by optimizing pores and adding pitch-based carbon fibers for pavement cooling. Energy and Buildings, 296, 113388. https://doi.org/10.1016/j.enbuild.2023.113388
  • Wang, Z., Xu, Z., Guan, Y., Zhu, H., Yuan, G., Dong, Z., & Cong, Y. (2022). Preparation of pitch-based activated carbon fibers with high specific surface area and excellent adsorption properties. Research on Chemical Intermediates, 48(4), 1733-1746. https://doi.org/10.1007/s11164-022-04679-9
  • Ryu, D. Y., Shimohara, T., Nakabayashi, K., Miyawaki, J., Park, J. I., & Yoon, S. H. (2019). Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde. Journal of Industrial and Engineering Chemistry, 80, 98-105. https://doi.org/10.1016/j.jiec.2019.07.036
  • Sugiyama, H., & Hattori, Y. (2020). Selective and enhanced CO2 adsorption on fluorinated activated carbon fibers. Chemical Physics Letters, 758, 137909. https://doi.org/10.1016/j.cplett.2020.137909
  • Yoshikawa, Y., Teshima, K., Futamura, R., Tanaka, H., Iiyama, T., & Kaneko, K. (2021). Structural adsorption mechanism of chloroform in narrow micropores of pitch-based activated carbon fibres. Carbon, 171, 681-688. https://doi.org/10.1016/j.carbon.2020.08.020
  • Wei, W., Wang, F., Yang, J., Zou, J., Li, J., & Shi, K. A. (2021). A superior potassium-ıon anode material from pitch-based activated carbon fibers with hierarchical pore structure prepared by metal catalytic activation. ACS Applied Materials & Interfaces, 13(5), 6557-6565. https://doi.org/10.1021/acsami.0c22184
  • Gelfond, J., Meng, T., Li, S., Li, T., & Hu, L. (2023). Highly electrically conductive biomass-derived carbon fibers for permanent carbon sequestration. Sustainable Materials and Technologies, 35, e00573.https://doi.org/10.1016/j.susmat.2023.e00573
  • Chen, J., Ghosh, T., Ayranci, C., & Tang, T. (2022). Bio-cleaned lignin-based carbon fiber and its application in adsorptive water treatment. Journal of Applied Polymer Science, 139(18), 52054. https://doi.org/10.1002/app.52054
  • Chiu, K. L., & Ng, D.H. (2012). Synthesis and characterization of cotton-made activated carbon fiber and its adsorption of methylene blue in water treatment. Biomass and Bioenergy, 46, 102-110. https://doi.org/10.1016/j.biombioe.2012.09.023
  • Jin, Z., Yan, X., Yu, Y., & Zhao, G. (2014). Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2(30), 11706-11715. https://doi.org/10.1039/C4TA01413H
  • Hu, F., Wang, M., Peng, X., Qiu, F., Zhang, T., Dai, H., & Cao, Z. (2018). High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 314-323. https://doi.org/10.1016/j.colsurfa.2018.07.010
  • Hong, S., Song, N., Sun, J., Chen, G., Dong, H., & Li, C. (2022). Nitrogen-doped biomass carbon fibers with surface encapsulated Co nanoparticles for electrocatalytic overall water-splitting. Chemical Communications, 58(11), 1772-1775.https://doi.org/10.1039/D1CC06906C
  • Zhang, T., Zhao, B., Chen, Q., Peng, X., Yang, D., & Qiu, F. (2019). Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Applied Biological Chemistry, 62, 1-7. https://doi.org/10.1186/s13765-019-0410-z
  • Chen, Y., Wang, C., Chen, J., Wang, S., Ju, J., & Kang, W. (2022). Preparing biomass carbon fiber derived from waste rabbit hair as a carrier of TiO2 for photocatalytic degradation of methylene blue. Polymers, 14(8), 1593.https://doi.org/10.3390/polym14081593
  • Peng, Q., Li, Y., He, X., Lv, H., Hu, P., Shang, Y., Wang, C., Wang, R., Sritharan, T., & Du, S. (2013). Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization. Composites Science and Technology, 74, 37-42. https://doi.org/10.1016/j.compscitech.2012.10.005
  • Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35-50. https://doi.org/10.1016/j.compscitech.2014.07.005
  • Li, N., Liu, G., Wang, Z., Liang, J., & Zhang, X. (2014). Effect of surface treatment on surface characteristics of carbon fibers and interfacial bonding of epoxy resin composites. Fibers and Polymers, 15, 2395-2403. https://doi.org/10.1007/s12221-014-2395-x
  • Park, S.J. (2018). Carbon Fibers. Springer Singapore. https://doi.org/10.1007/978-981-13-0538-2
  • Tam, L. H., Minkeng, M.A.N., Lau, D., Mansour, W., & Wu, C. (2023). Molecular interfacial shearing creep behavior of carbon fiber/epoxy matrix interface under moisture condition. Engineering Fracture Mechanics, 282, 109177. https://doi.org/10.1016/j.engfracmech.2023.109177
  • Chauhan, A., Agnihotri, P. K., & Basu, S. (2023). Molecular dynamic study on modulating the interfacial thermal conductivity of carbon fiber/epoxy interfaces. Computational Materials Science, 217, 111914. https://doi.org/10.1016/j.commatsci.2022.111914
  • Darıcık, F., Topcu, A., Aydın, K., & Çelik, S. (2023). Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy, 48(3), 1090-1106. https://doi.org/10.1016/j.ijhydene.2022.09.297
  • Hesseler, S., Stapleton, S. E., Appel, L., Schöfer, S., & Manin, B. (2021). Modeling of reinforcement fibers and textiles. In Nicholus Tayari Akankwasa, (Ed), Advances in Modeling and Simulation in Textile Engineering, (pp. 267-299). https://doi.org/10.1016/B978-0-12-822977-4.00010-8
  • Yang, D., Dong, S., Hong, C., & Zhang, X. (2022). Preparation, modification, and coating for carbon-bonded carbon fiber composites: A review. Ceramics International, 48(11), 14935-14958. https://doi.org/10.1016/j.ceramint.2022.03.055
  • Wang, Y., Jiang, T., Shi, S., Xiang, L., Tang, B., Qi, Z., & Yu, J. (2023). Lightweight chopped carbon fiber/carbon composites with low thermal conductivity fabricated by vacuum filtration method. Fullerenes, Nanotubes and Carbon Nanostructures, 31(7), 605-612. https://doi.org/10.1080/1536383X.2023.2194638
  • Ding, S., Wang, X., Qiu, L., Ni, Y. Q., Dong, X., Cui, Y., & Ou, J. (2023). Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder. Small, 19(9), 2206258. https://doi.org/10.1002/smll.202206258
  • Wu, D., Hao, Z., Sheng, Y., Zhao, Q., Dong, Q., Han, Y., & Wang, M. (2022). Construction of an orderly carbon fiber/carbon nanotubes hybrid composites by a mild, effective, and green method for highly ınterface reinforcement. Advanced Materials Interfaces, 9(34), 2201360. https://doi.org/10.1002/admi.202201360
  • Lv, Z., Sha, J., Lin, G., Wang, J., Guo, Y., & Dong, S. (2023). Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers. Journal of Alloys and Compounds, 947, 169550. https://doi.org/10.1016/j.jallcom.2023.169550
  • Zhou, Y., Zhang, P., & Ning, F. (2023). Joining of carbon fiber reinforced polymer/titanium stacks using directed energy deposition additive manufacturing. Composite Structures, 310, 116775. https://doi.org/10.1016/j.compstruct.2023.116775
  • Yang, L., Shi, X., Tian, X., Xue, Y., Wang, J., & Qi, L. (2022). Influence of pH value on the microstructure and corrosion behavior of carbon fiber reinforced magnesium matrix composites. Journal of Materials Research and Technology, 17, 412-424. https://doi.org/10.1016/j.jmrt.2022.01.031
  • Tong, Y., Wang, L., Wang, B., Hu, Y., Cai, Z., Ren, J., & Li, S. (2023). Microstructure and mechanical behavior of carbon fiber reinforced carbon, silicon carbide, and copper alloy hybrid composite fabricated by Cu-Si alloy melt infiltration. Advanced Composites and Hybrid Materials, 6(1), 25. https://doi.org/10.1007/s42114-022-00612-1
  • Xiao, J., Wang, Y., Liu, J., Yang, Y., Zhang, Y., & Luo, X. (2023). Hierarchical Ni/Ni4Mo nanosheets array on carbon fiber as a bifunctional electrocatalyst for urea-oxidation-assisted water splitting. International Journal of Hydrogen Energy, 51, 982-992. https://doi.org/10.1016/j.ijhydene.2023.07.131
  • Belgibayeva, A., Rakhatkyzy, M., Rakhmetova, A., Kalimuldina, G., Nurpeissova, A., & Bakenov, Z. (2023). Synthesis of free-standing tin phosphide/phosphate carbon composite nanofibers as anodes for lithium-ıon batteries with ımproved low-temperature performance. Small, 19, 2304062. https://doi.org/10.1002/smll.202304062
  • Hao, X., Nie, H., Ye, Z., Luo, Y., Zheng, L., & Liang, W. (2019). Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn-Al alloy composite. Materials Science and Engineering: A, 740, 218-225.https://doi.org/10.1016/j.msea.2018.10.050
  • Tang S., & Hu C. (2017). Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. Journal of Materials Science and Technology, 33(2), 117–30.https://doi.org/10.1016/j.jmst.2016.08.004
  • Tong, Y., Hu, Y., Liang, X., Zhang, Z., Li, Y., Chen, Z., & Hua, M. (2020). Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation: Ablation resistance, microstructure and damage mechanism. Ceramics International, 46(10), 14408-14415. https://doi.org/10.1016/j.ceramint.2020.02.236
  • Kubota, Y., Arai, Y., Yano, M., Inoue, R., Goto, K., & Kogo, Y. (2019). Oxidation and recession of plain weave carbon fiber reinforced ZrB2-SiC-ZrC in oxygen–hydrogen torch environment. Journal of the European Ceramic Society, 39(9), 2812-2823. https://doi.org/10.1016/j.jeurceramsoc.2019.03.010
  • Liu, Y., Cheng, Y., Ma, D., Hu, N., Han, W., Liu, D., & Wang, A. (2022). Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing. Journal of the European Ceramic Society, 42(9), 3699-3707. https://doi.org/10.1016/j.jeurceramsoc.2022.03.045
  • Vinci, A., Zoli, L., Sciti, D., Watts, J., Hilmas, G. E., & Fahrenholtz, W. G. (2019). Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C. Journal of the European Ceramic Society, 39(4), 780-787. https://doi.org/10.1016/j.jeurceramsoc.2018.11.017
  • Çelik, A. İ., Özkılıç, Y. O., Zeybek, Ö., Özdöner, N., & Tayeh, B. A. (2022). Performance assessment of fiber-reinforced concrete produced with waste lathe fibers. Sustainability, 14(19), 11817. https://doi.org/10.3390/su141911817
  • Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: a review. Journal of Materials Science, 51, 6517-6551. https://doi.org/10.1007/s10853-016-9917-4
  • Zhutovsky, S., & Nayman, S. (2022). Modeling of crack-healing by hydration products of residual cement in concrete. Construction and Building Materials, 18, 340. https://doi.org/10.1016/j.conbuildmat.2022.127682
  • Manvith Kumar Reddy, C., Ramesh, B., & Macrin, D. (2020). Effect of crystalline admixtures, polymers and fibers on self healing concrete - a review. Materials Today: Proceedings, 33, 763–70. https://doi.org/10.1016/j.matpr.2020.06.122
  • Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., & Liu, Z. (2021). The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Construction and Building Materials, 282, 122706. https://doi.org/10.1016/j.conbuildmat.2021.122706
  • Raza, S. S., Qureshi, L. A., Ali, B., Raza, A., & Khan, M. M. (2021). Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Structural Concrete, 22(1), 334–46.https://doi.org/10.1002/suco.201900439
  • Ahmad, J., González-Lezcano, R. A., Majdi, A., Ben Kahla, N., Deifalla, A. F., & El-Shorbagy, M. A. (2022). Glass fibers reinforced concrete: overview on mechanical, durability and microstructure analysis. Materials, 15(15), 5111.https://doi.org/10.3390/ma15155111
  • Li, W., Tang, S., Huang, X., Liu, W., Yang, X., & Shi, T. (2022). Carbon fiber-reinforced polymer mesh fabric as shear reinforcement in reinforced concrete beams. Journal of Building Engineering, 53, 104433.https://doi.org/10.1016/j.jobe.2022.104433
  • Yu, F., Wang, S., Fang, Y., Zhang, N., Wang, Y., & Nuermaimaiti, M. (2023). Seismic behavior of interior polyvinyl chloride–carbon fiber-reinforced polymer-confined concrete column–ring beam joints. Archives of Civil and Mechanical Engineering, 23(1), 1–19. https://doi.org/10.1007/s43452-022-00586-3
  • Jeon, E. B., Ahn, S. K., Lee, I. G., Koh, H. I., Park, J., & Kim, H. S. (2015). Investigation of mechanical/dynamic properties of carbon fiber reinforced polymer concrete for low noise railway slab. Composite Structures, 134, 27–35.https://doi.org/10.1016/j.compstruct.2015.08.082
  • Liu, G. J., Bai, E. L., Xu, J. Y., & Yang, N. (2019). Mechanical properties of carbon fiber-reinforced polymer concrete with different polymer–cement ratios. Materials, 12(21), 3530. https://doi.org/10.3390/ma12213530
  • Liu, G. J., Bai, E. L., Xu, J. Y., Yang, N., & Wang, T. J. (2020). Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates. Construction and Building Materials, 261, 119995. https://doi.org/10.1016/j.conbuildmat.2020.119995
  • Wang, Z., Ma, G., Ma, Z., & Zhang, Y. (2021). Flexural behavior of carbon fiber-reinforced concrete beams under impact loading. Cement and Concrete Composites, 118, 103910. https://doi.org/10.1016/j.cemconcomp.2020.103910
  • Huang, L., Su, L., Xie, J., Lu, Z., Li, P., & Hu, R. (2022). Dynamic splitting behaviour of ultra-high-performance concrete confined with carbon-fibre-reinforced polymer. Composite Structures, 284, 115155.https://doi.org/10.1016/j.compstruct.2021.115155
  • Farooq, M., & Banthia, N. (2022). Strain-hardening fiber reinforced polymer concrete with a low carbon footprint. Construction and Building Materials, 314, 125705. https://doi.org/10.1016/j.conbuildmat.2021.125705
  • Batarlar, B., & Saatci, S. (2022). Numerical investigation on the behavior of reinforced concrete slabs strengthened with carbon fiber textile reinforcement under impact loads. Structures, 41, 1164–77. https://doi.org/10.1016/j.istruc.2022.05.057
  • Pu, H., Hou, Y. L., Chen, J. Z., & Zhao, D. L. (2024). Graphene with different groups on the interfacial properties of carbon fiber/epoxy composites. Polymer, 290, 126512. https://doi.org/10.1016/j.polymer.2023.126512

Karbon Fiber ve Karbon Fiber Kompozitler: Sentezi, Özellikleri, Uygulama Alanları

Yıl 2024, Cilt: 9 Sayı: 1, 240 - 265, 29.06.2024
https://doi.org/10.33484/sinopfbd.1393364

Öz

Karbon fiber hafif ve sağlam bir malzeme olduğundan kompozit üretiminde sıklıkla tercih edilmektedir. Geleneksel olarak Poliakrilonitril (PAN) ve Zift temelinde üretilir. Günümüzde bu petrol temelli başlatıcılara alternatif olarak biyokütle-temelli karbon fiber üretimi üzerinde çalışılmaktadır. Bu amaçla pamuk, odun ve selüloz en çok kullanılan biyokütle türleridir. Ancak çevre dostu karbon fiber henüz petrol temelli olanlar kadar iyi bir çekme mukavemetine sahip değildir. Bu nedenle, araştırmacılar biyo temelli karbon fiber üretimini PAN eşliğinde gerçekleştirmektedirler. Karbon fiber, polimerler, metaller, seramikler ve çimento gibi birçok malzemeyle kompozit olarak geliştirilebilmektedir. Geniş bir kullanım alanına sahiptir. Günümüzde araştırmacılar, kompozitin fonksiyonel özelliklerini arttırmak için epoksi ve karbon fiber arasındaki arayüzü iyileştirmeye çalışmaktadır. Karbon fiber takviyeli metal hazırlanarak kompozitin katalizör olarak kullanılması mümkün olabilir. Beton üretiminde çatlak oluşumunu önlemek amacıyla dolgu maddesi olarak karbon fiber kullanılmaktadır. Deprem felaketlerini önlemekte karbon fiber kompozitler önem taşır. Kısacası, bu çalışma ile tüm karbon fiber türleri (PAN, Zift, biyo temelli) ve kompozitlerinin (polimer, metal, seramik, beton, karbon nanotüp ve grafen) sentezi ve uygulamaları hakkında güncel ve kapsamlı bilgi sağlanabilir.

Kaynakça

  • Huang, X. (2009). Fabrication and properties of carbon fibers. Materials, 2, 2369–403. https://doi.org/10.3390/ma2042369
  • Jang, D., Lee, M. E., Choi, J., Cho, S. Y., & Lee, S. (2022). Strategies for the production of PAN-Based carbon fibers with high tensile strength. Carbon, 186, 644–77. https://doi.org/10.1016/j.carbon.2021.10.061
  • Chand, S. (2000). Review Carbon fibers for composites. Journal of Materials Science, 35, 1303-13. https://doi.org/10.1023/A:1004780301489
  • de Souza Abreu, F., Ribeiro, C.C., da Silva Pinto, J.D., Nsumbu, T.M., & Buono, V.T.L. (2020). Influence of adding discontinuous and dispersed carbon fiber waste on concrete performance. Journal of Cleaner Production, 273, 122920.https://doi.org/10.1016/j.jclepro.2020.122920
  • Trademap page forworldwide imported carbon fiber derivatives amount in 2022. (2023, November 21).https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c6815%7c%7c%7c4%7c1%7c1%7c1%7c1%7c%7c2%7c1%7c1%7c1
  • Trademap page for worldwide exported carbon fiber derivatives amount in 2022. (2023, November 21).https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c6815%7c%7c%7c4%7c1%7c1%7c2%7c1%7c%7c2%7c1%7c1%7c1
  • Ogale, A. A., Zhang, M., & Jin, J. (2016). Recent advances in carbon fibers derived from biobased precursors. Journal of Applied Polymer Science, 133(45). https://doi.org/10.1002/app.43794
  • Huang, C., Su, Y., Gong, H., Jiang, Y., Chen, B., Xie, Z., Zhou, J., & Li, Y. (2024). Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. International Journal of Biological Macromolecules, 256, 127878. https://doi.org/10.1016/j.ijbiomac.2023.127878
  • Liu, X., Hou, G., Zhao, J., Zhao, W., Xu, Q., Zheng, X., Liu, Z., & Lai, Y. (2023). Self-interlocked down Biomass-based carbon fiber aerogel for highly efficient and stable solar steam generation. Chemical Engineering Journal, 465, 142826. https://doi.org/10.1016/j.cej.2023.142826
  • Wang, Y., Li, S., Hou, C., Jing, L., Ren, R., Ma, L., Wang, X., & Wang, J. (2022). Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Separation and Purification Technology, 282, 12005. https://doi.org/10.1016/j.seppur.2021.120059
  • Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326. https://doi.org/10.1016/j.dt.2018.02.001
  • Zheng, X., Kim, B. R., Hong, S. J., Lee, J. G., & Park, C. W. (2024). Heat transfer analysis of carbon fiber-reinforced corrugated polymer plate heat exchangers. Applied Thermal Engineering, 244, 122684. https://doi.org/10.1016/j.applthermaleng.2024.122684
  • Abbas, S., & Park, C. W. (2024). Machine learning based frost thickness prediction of carbon fiber-reinforced polymer composite fin for potential heat pump application. International Communications in Heat and Mass Transfer, 153, 107333. https://doi.org/10.1016/j.icheatmasstransfer.2024.107333
  • Heidarian, P., Mokhtari, F., Naebe, M., Henderson, L. C., & Varley, R. J. (2024). Reclamation and reformatting of waste carbon fibers: A paradigm shift towards sustainable waste management. Resources, Conservation and Recycling, 203, 107465. https://doi.org/10.1016/j.resconrec.2024.107465
  • Sayed, E. T., Olabi, A. G., Mouselly, M., Alawadhi, H., & Abdelkareem, M. A. (2024). Zinc-based metal organic framework on carbon fiber brush as a novel anode of yeast-based microbial fuel cell. International Journal of Hydrogen Energy, 52, 856-864. https://doi.org/10.1016/j.ijhydene.2023.06.016
  • Guo, Z. X., Shi, H. L., Ma, S. G., Cui, J. J., Chai, G. B., & Li, Y. C. (2024). An analysis of tensile and compressive properties of carbon fiber high-entropy alloy composite laminates. Mechanics of Composite Materials, 59(6), 1147-1156. https://doi.org/10.1007/s11029-023-10162-2
  • Saravanan, L., Anand, P., Fu, Y. P., Ma, Y. R., & Yeh, W. C. (2024). Enhancing the hydrogen evolution performance of tungsten diphosphide on carbon fiber through ruthenium modification. ACS Applied Materials & Interfaces, 16(10), 12407-12416. https://doi.org/10.1021/acsami.3c17114
  • Tavasolikejani, S., Hosseini, S. M., Ghiaci, M., Vangijzegem, T., & Laurent, S. (2024). Copper nanoparticles embedded into nitrogen-doped carbon fiber felt as recyclable catalyst for benzene oxidation under mild conditions. Molecular Catalysis, 553, 113736. https://doi.org/10.1016/j.mcat.2023.113736
  • Li, M., Xing, F., Li, T., Wang, S., Gu, Y., Zhang, W., Wang, Y., & Li, Q. (2023). Multiscale interfacial enhancement of surface grown carbon nanotubes carbon fiber composites. Polymer Composites, 44(5), 2766-2777. https://doi.org/10.1002/pc.27278
  • Li, N., Cheng, S., Wang, B., Zong, L., Bao, Q., Wu, G., Hu, F., Wang, J., Liu, C., & Jian, X. (2023). Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: a step closer to industrial production. Composites Science and Technology, 231, 109822. https://doi.org/10.1016/j.compscitech.2022.109822
  • Zhu, T., & Wang, Z. (2023). Research and application prospect of short carbon fiber reinforced ceramic composites. Journal of the European Ceramic Society, 43(15), 6699-6717. https://doi.org/10.1016/j.jeurceramsoc.2023.07.007
  • Zhao, F., Shi, Z., Li, Q., Yu, S., & Liu, M. (2024). A comprehensive performance evaluation and optimization of steel/carbon fiber-reinforced eco-efficient concrete (FREC) utilizing multi-mechanical indicators. Journal of Cleaner Production, 441, 140993. https://doi.org/10.1016/j.jclepro.2024.140993
  • Zhou, Z., Zhao, B., Lone, U. A., & Fan, Y. (2024). Experimental study on mechanical properties of shredded prepreg carbon cloth waste fiber reinforced concrete. Journal of Cleaner Production, 436, 140456. https://doi.org/10.1016/j.jclepro.2023.140456
  • Tanaka, F., Ishikawa, T., & Tane, M. (2024). A comprehensive review of the elastic constants of carbon fibers: implications for design and manufacturing of high-performance composite materials. Advanced Composite Materials, 33(2), 269-289. https://doi.org/10.1080/09243046.2023.2245210
  • Song, X., Yu, M., Niu, H., Li, Y., Chen, C., Zhou, C., Liu, L., & Wu, G. (2024). Poly (methyl dihydroxybenzoate) modified waterborne polyurethane sizing coatings with chemical and hydrogen-bonded complex cross-linking structures for improving the surface wettability and mechanical properties of carbon fiber. Progress in Organic Coatings, 187, 108112. https://doi.org/10.1016/j.porgcoat.2023.108112
  • Ismail, K. B. M., Kumar, M. A., Mahalingam, S., Raj, B., & Kim, J. (2024). Carbon fiber-reinforced polymers for energy storage applications. Journal of Energy Storage, 84, 110931. https://doi.org/10.1016/j.est.2024.110931
  • Chen, J., Zheng, J., Wang, F., Huang, Q., Ji, G. (2021). Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon, 74, 509-517. https://doi.org/10.1016/j.carbon.2020.12.077
  • Šahmenko, G., Krasnikovs, A., Lukašenoks, A., & Eiduks, M. (2015). Ultra high performance concrete reinforced with short steel and carbon fibers. Envıronment Technologıes Resources, 1, 193-199. https://doi.org/10.17770/etr2015vol1.196
  • Adeniran, O., Cong, W., & Aremu, A. (2022). Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Composites: A state-of-the-art review. Advances in Industrial and Manufacturing Engineering, 5, 100100.https://doi.org/10.1016/j.aime.2022.100100
  • Shirvanimoghaddam, K., Hamim, S.U., Akbari, M.K., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., & Naebe, M. (2017). Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032
  • Frank, E., Ingildeev, D., & Buchmeiser, M. R. (2017). High-performance PAN-based carbon fibers and their performance requirements. In Gajanan Bhat (Ed), Structure and Properties of High-Performance Fibers, (pp. 7–30). https://doi.org/10.1016/B978-0-08-100550-7.00002-4
  • Park, S. W., Yang, S. S., & Park, S. H. (1999). The kinetics of radical copolymerization of acrylonitrile and methylacrylate with tricaprylylmethylammonium chloride as a phase‐transfer catalyst. Journal of Polymer Science Part A: Polymer Chemistry, 37(17), 3504-3512. https://doi.org/10.1002/(SICI)1099-0518(19990901)37:17<3504::AID-POLA8>3.0.CO;2-L
  • Parts, A. G. (1959). Polymerization kinetics of acrylonitrile. Journal of Polymer Science, 37(131), 131-145. https://doi.org/10.1002/pol.1959.1203713109
  • Fordham, J. W. L., & Williams, H. L. (1951). The persulfate-iron (II) initiator system for free radical polymerizations1. Journal of the American Chemical Society, 73(10), 4855-4859. https://doi.org/10.1021/ja01154a114
  • Yan, J., Pan, X., Schmitt, M., Wang, Z., Bockstaller, M. R., & Matyjaszewski, K. (2016). Enhancing initiation efficiency in metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). ACS Macro Letters, 5(6), 661-665.https://doi.org/10.1021/acsmacrolett.6b00295
  • Hao, J., An, F., Lu, C., & Liu, Y. (2019). Solvent effects on radical copolymerization of acrylonitrile and methyl acrylate: solvent polarity and solvent-monomer interaction. Journal of Macromolecular Science, Part A, 56(11), 1012-1021. https://doi.org/10.1080/10601325.2019.1642767
  • Gao, T., Yan, G., Yang, X., Yan, Q., Tian, Y., & Song, J. (2022). Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. Journal of Energy Chemistry, 71, 192–200. https://doi.org/10.1016/j.jechem.2022.02.040
  • Hamideh Mortazavi, S., Pilehvar, S., Ghoranneviss, M., Hosseinnejad, M. T., Zargham, S., Mirarefi, A. A., & Mirarefi, A. Y. (2013). Plasma oxidation and stabilization of electrospun polyacrylonitrile nanofiber for carbon nanofiber formation. Applied Physics A, 113, 703-712. https://doi.org/10.1007/s00339-013-7707-2
  • Zhang, C., Liu, J., Guo, S., Xiao, S., Shen, Z., & Xu, L. (2018). Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate. Ceramics International, 44(12), 14377-14385. https://doi.org/10.1016/j.ceramint.2018.05.047
  • Shokrani Havigh, R., & Mahmoudi Chenari, H. (2022). A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientific Reports, 12(1), 10704. https://doi.org/10.1038/s41598-022-15085-x
  • Ma, Q. S., Gao, A. J., Tong, Y. J., & Zhang, Z. G. (2016). The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New carbon materials, 31(5), 550-554. https://doi.org/10.1016/S1872-5805(16)60031-8
  • Lee, J. C., Lee, B. H., Kim, B. G., Park, M. J., Lee, D. Y., Kuk, I. H., Chung, H., Kang, H. S., Lee, H. S., & Ahn, D. H. (1997). The effect of carbonization temperature of PAN fiber on the properties of activated carbon fiber composites. Carbon, 35(10-11), 1479-1484. https://doi.org/10.1016/S0008-6223(97)00098-5
  • Athulya Wickramasingha, Y., Dharmasiri, B., Randall, J.D., Yin, Y., Andersson, G.G., & Nepal, D. (2022). Surface modification of carbon fiber as a protective strategy against thermal degradation. Composites Part A Applied Science and Manufacturing, 153, 106740. https://doi.org/10.1016/j.compositesa.2021.106740
  • Naito, K., Yang, J.M., Xu, Y., & Kagawa, Y. (2010). Enhancing the thermal conductivity of polyacrylonitrile- and pitch-based carbon fibers by grafting carbon nanotubes on them. Carbon, 48(6), 1849–57. https://doi.org/10.1016/j.carbon.2010.01.031
  • Yusof, N., & Ismail, A.F. (2012). Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. Journal of Analytical and Applied Pyrolysis, 93, 1–13.https://doi.org/10.1016/j.jaap.2011.10.001
  • Böhm, R., Thieme, M., Wohlfahrt, D., Wolz, D.S., Richter, B., & Jäger, H. (2018). Reinforcement systems for carbon concrete composites based on low-cost carbon fibers. Fibers, 6(3), 56. https://doi.org/10.3390/fib6030056
  • Liu, J., Chen, X., Liang, D., & Xie, Q. (2020). Development of pitch-based carbon fibers: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 12(12), 3059. https://doi.org/10.1080/15567036.2020.1806952
  • Iowa State University Center for Nondestructive Evaluation. (2024, April 5). Anisotropy and isotropy. https://www.nde-ed.org/Physics/Materials/Structure/anisotropy.xhtml#:~:text=When%20the%20properties%20of%20a,is%20said%20to%20be%20isotropic
  • Ko, S., Choi, J. E., Lee, C. W., & Jeon, Y. P. (2020). Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers. Carbon Letters, 30(1), 35–44. https://doi.org/10.1007/s42823-019-00067-3
  • Kim, B. J., Kotegawa, T., Eom, Y., An, J., Hong, I. P., Kato, O., & Yoon, S. H. (2016). Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 99, 649-657. https://doi.org/10.1016/j.carbon.2015.12.082
  • Xia, G., Wang, H., Zhan, J., Yin, X., Wu, X., Yu, G., & Wu, M. (2020). Evaluation of the stability of polyacrylonitrile-based carbon fiber electrode for hydrogen peroxide production and phenol mineralization during electro-peroxone process. Chemical Engineering Journal, 396, 125291. https://doi.org/10.1016/j.cej.2020.125291
  • Zai, X., Liu, A., Tian, Y., Chai, F., & Fu, Y. (2020). Oxidation modification of polyacrylonitrile-based carbon fiber and ıts electro-chemical performance as marine electrode for electric field test. Journal of Ocean University of China, 19, 361-368. https://doi.org/10.1007/s11802-020-4178-x
  • Deng, N., Peng, Z., Tian, X., Li, Y., Yan, J., Liu, Y., & Kang, W. (2023). Yttrium trifluoride doped polyacrylonitrile based carbon nanofibers as separator coating layer for high performance lithium-metal batteries. Journal of Colloid and Interface Science, 634, 949-962. https://doi.org/10.1016/j.jcis.2022.12.081
  • Li, C., Qian, X., Hao, M., Wang, X., Zhu, S., Guo, M., & Zhang, Y. (2023). Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs. Journal of Alloys and Compounds, 950, 169912. https://doi.org/10.1016/j.jallcom.2023.169912
  • Ma, C., Lu, T., Demir, M., Yu, Q., Hu, X., Jiang, W., & Wang, L. (2022). Polyacrylonitrile-derived N-doped nanoporous carbon fibers for CO2 adsorption. ACS Applied Nano Materials, 5(9), 13473-13481. https://doi.org/10.1021/acsanm.2c03126
  • Matsuzawa, F., Amano, Y., & Machida, M. (2022). Phosphate ion adsorption characteristics of PAN-based activated carbon prepared by zinc chloride activation. International Journal of Environmental Science and Technology, 19, 8159-8168. https://doi.org/10.1007/s13762-021-03695-3
  • Shi, R., Chen, H., Liu, B., Zhou, C., Pi, W., Zeng, Z., & Li, L. (2022). Porous carbon fibers from low-temperature sodium amide activation for acetone adsorption. Materials Chemistry and Physics, 286, 126186. https://doi.org/10.1016/j.matchemphys.2022.126186
  • Hwang, S. H., Kim, Y. K., Seo, H. J., Jeong, S. M., Kim, J., & Lim, S. K. (2021). The enhanced hydrogen storage capacity of carbon fibers: the effect of hollow porous structure and surface modification. Nanomaterials, 11(7), 1830. https://doi.org/10.3390/nano11071830
  • Wu, J., Li, T., Meng, G., Xiang, Y., Hai, J., & Wang, B. (2021). Carbon nanofiber supported Ni–ZnO catalyst for efficient and selective hydrogenation of pyrolysis gasoline. Catalysis Science & Technology, 11(12), 4216-4225. https://doi.org/10.1039/D1CY00548K
  • Yue, Y., Wang, Y., Qu, C., & Xu, X. (2021). Modification of polyacrylonitrile-based activated carbon fibers and their p-nitrophenol adsorption and degradation properties. Journal of Environmental Chemical Engineering, 9(4), 105390. https://doi.org/10.1016/j.jece.2021.105390
  • Patchen, A., Young, S., Goodbred, L., Puplampu, S., Chawla, V., & Penumadu, D. (2023). Lower carbon footprint concrete using recycled carbon fiber for targeted strength and insulation. Materials, 16(15), 5451. https://doi.org/10.3390/ma16155451
  • Zhu, C., Su, Y., Wang, X., Sun, H., Ouyang, Q., & Zhang, D. (2021). Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing. Composites Part B: Engineering, 215, 108746. https://doi.org/10.1016/j.compositesb.2021.108746
  • Park, H. M., Kim, G. M., Lee, S. Y., Jeon, H., Kim, S. Y., & Kim, M. (2018). Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Construction and Building Materials, 165, 484–93. https://doi.org/10.1016/j.conbuildmat.2017.12.205
  • Gan, Q., & Fu, Y. (2023). Emerging dual carbon fiber batteries. Electrochimica Acta, 439, 141597.https://doi.org/10.1016/j.electacta.2022.141597.
  • Wu, Y., Gao, X., Nguyen, T.T., Wu, J., Guo, M., & Liu, W. (2022). Green and low-cost natural lignocellulosic biomass-based carbon fibers—processing, properties, and applications in sports equipment: A review. Polymers, 14, 2591. https://doi.org/10.3390/polym14132591
  • Wei, J., Gao, D., Wang, Y., Miao, Z., & Zhou, Y. (2023). Enhancing thermal conductivity of cement-based composites by optimizing pores and adding pitch-based carbon fibers for pavement cooling. Energy and Buildings, 296, 113388. https://doi.org/10.1016/j.enbuild.2023.113388
  • Wang, Z., Xu, Z., Guan, Y., Zhu, H., Yuan, G., Dong, Z., & Cong, Y. (2022). Preparation of pitch-based activated carbon fibers with high specific surface area and excellent adsorption properties. Research on Chemical Intermediates, 48(4), 1733-1746. https://doi.org/10.1007/s11164-022-04679-9
  • Ryu, D. Y., Shimohara, T., Nakabayashi, K., Miyawaki, J., Park, J. I., & Yoon, S. H. (2019). Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde. Journal of Industrial and Engineering Chemistry, 80, 98-105. https://doi.org/10.1016/j.jiec.2019.07.036
  • Sugiyama, H., & Hattori, Y. (2020). Selective and enhanced CO2 adsorption on fluorinated activated carbon fibers. Chemical Physics Letters, 758, 137909. https://doi.org/10.1016/j.cplett.2020.137909
  • Yoshikawa, Y., Teshima, K., Futamura, R., Tanaka, H., Iiyama, T., & Kaneko, K. (2021). Structural adsorption mechanism of chloroform in narrow micropores of pitch-based activated carbon fibres. Carbon, 171, 681-688. https://doi.org/10.1016/j.carbon.2020.08.020
  • Wei, W., Wang, F., Yang, J., Zou, J., Li, J., & Shi, K. A. (2021). A superior potassium-ıon anode material from pitch-based activated carbon fibers with hierarchical pore structure prepared by metal catalytic activation. ACS Applied Materials & Interfaces, 13(5), 6557-6565. https://doi.org/10.1021/acsami.0c22184
  • Gelfond, J., Meng, T., Li, S., Li, T., & Hu, L. (2023). Highly electrically conductive biomass-derived carbon fibers for permanent carbon sequestration. Sustainable Materials and Technologies, 35, e00573.https://doi.org/10.1016/j.susmat.2023.e00573
  • Chen, J., Ghosh, T., Ayranci, C., & Tang, T. (2022). Bio-cleaned lignin-based carbon fiber and its application in adsorptive water treatment. Journal of Applied Polymer Science, 139(18), 52054. https://doi.org/10.1002/app.52054
  • Chiu, K. L., & Ng, D.H. (2012). Synthesis and characterization of cotton-made activated carbon fiber and its adsorption of methylene blue in water treatment. Biomass and Bioenergy, 46, 102-110. https://doi.org/10.1016/j.biombioe.2012.09.023
  • Jin, Z., Yan, X., Yu, Y., & Zhao, G. (2014). Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2(30), 11706-11715. https://doi.org/10.1039/C4TA01413H
  • Hu, F., Wang, M., Peng, X., Qiu, F., Zhang, T., Dai, H., & Cao, Z. (2018). High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 314-323. https://doi.org/10.1016/j.colsurfa.2018.07.010
  • Hong, S., Song, N., Sun, J., Chen, G., Dong, H., & Li, C. (2022). Nitrogen-doped biomass carbon fibers with surface encapsulated Co nanoparticles for electrocatalytic overall water-splitting. Chemical Communications, 58(11), 1772-1775.https://doi.org/10.1039/D1CC06906C
  • Zhang, T., Zhao, B., Chen, Q., Peng, X., Yang, D., & Qiu, F. (2019). Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Applied Biological Chemistry, 62, 1-7. https://doi.org/10.1186/s13765-019-0410-z
  • Chen, Y., Wang, C., Chen, J., Wang, S., Ju, J., & Kang, W. (2022). Preparing biomass carbon fiber derived from waste rabbit hair as a carrier of TiO2 for photocatalytic degradation of methylene blue. Polymers, 14(8), 1593.https://doi.org/10.3390/polym14081593
  • Peng, Q., Li, Y., He, X., Lv, H., Hu, P., Shang, Y., Wang, C., Wang, R., Sritharan, T., & Du, S. (2013). Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization. Composites Science and Technology, 74, 37-42. https://doi.org/10.1016/j.compscitech.2012.10.005
  • Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35-50. https://doi.org/10.1016/j.compscitech.2014.07.005
  • Li, N., Liu, G., Wang, Z., Liang, J., & Zhang, X. (2014). Effect of surface treatment on surface characteristics of carbon fibers and interfacial bonding of epoxy resin composites. Fibers and Polymers, 15, 2395-2403. https://doi.org/10.1007/s12221-014-2395-x
  • Park, S.J. (2018). Carbon Fibers. Springer Singapore. https://doi.org/10.1007/978-981-13-0538-2
  • Tam, L. H., Minkeng, M.A.N., Lau, D., Mansour, W., & Wu, C. (2023). Molecular interfacial shearing creep behavior of carbon fiber/epoxy matrix interface under moisture condition. Engineering Fracture Mechanics, 282, 109177. https://doi.org/10.1016/j.engfracmech.2023.109177
  • Chauhan, A., Agnihotri, P. K., & Basu, S. (2023). Molecular dynamic study on modulating the interfacial thermal conductivity of carbon fiber/epoxy interfaces. Computational Materials Science, 217, 111914. https://doi.org/10.1016/j.commatsci.2022.111914
  • Darıcık, F., Topcu, A., Aydın, K., & Çelik, S. (2023). Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy, 48(3), 1090-1106. https://doi.org/10.1016/j.ijhydene.2022.09.297
  • Hesseler, S., Stapleton, S. E., Appel, L., Schöfer, S., & Manin, B. (2021). Modeling of reinforcement fibers and textiles. In Nicholus Tayari Akankwasa, (Ed), Advances in Modeling and Simulation in Textile Engineering, (pp. 267-299). https://doi.org/10.1016/B978-0-12-822977-4.00010-8
  • Yang, D., Dong, S., Hong, C., & Zhang, X. (2022). Preparation, modification, and coating for carbon-bonded carbon fiber composites: A review. Ceramics International, 48(11), 14935-14958. https://doi.org/10.1016/j.ceramint.2022.03.055
  • Wang, Y., Jiang, T., Shi, S., Xiang, L., Tang, B., Qi, Z., & Yu, J. (2023). Lightweight chopped carbon fiber/carbon composites with low thermal conductivity fabricated by vacuum filtration method. Fullerenes, Nanotubes and Carbon Nanostructures, 31(7), 605-612. https://doi.org/10.1080/1536383X.2023.2194638
  • Ding, S., Wang, X., Qiu, L., Ni, Y. Q., Dong, X., Cui, Y., & Ou, J. (2023). Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder. Small, 19(9), 2206258. https://doi.org/10.1002/smll.202206258
  • Wu, D., Hao, Z., Sheng, Y., Zhao, Q., Dong, Q., Han, Y., & Wang, M. (2022). Construction of an orderly carbon fiber/carbon nanotubes hybrid composites by a mild, effective, and green method for highly ınterface reinforcement. Advanced Materials Interfaces, 9(34), 2201360. https://doi.org/10.1002/admi.202201360
  • Lv, Z., Sha, J., Lin, G., Wang, J., Guo, Y., & Dong, S. (2023). Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers. Journal of Alloys and Compounds, 947, 169550. https://doi.org/10.1016/j.jallcom.2023.169550
  • Zhou, Y., Zhang, P., & Ning, F. (2023). Joining of carbon fiber reinforced polymer/titanium stacks using directed energy deposition additive manufacturing. Composite Structures, 310, 116775. https://doi.org/10.1016/j.compstruct.2023.116775
  • Yang, L., Shi, X., Tian, X., Xue, Y., Wang, J., & Qi, L. (2022). Influence of pH value on the microstructure and corrosion behavior of carbon fiber reinforced magnesium matrix composites. Journal of Materials Research and Technology, 17, 412-424. https://doi.org/10.1016/j.jmrt.2022.01.031
  • Tong, Y., Wang, L., Wang, B., Hu, Y., Cai, Z., Ren, J., & Li, S. (2023). Microstructure and mechanical behavior of carbon fiber reinforced carbon, silicon carbide, and copper alloy hybrid composite fabricated by Cu-Si alloy melt infiltration. Advanced Composites and Hybrid Materials, 6(1), 25. https://doi.org/10.1007/s42114-022-00612-1
  • Xiao, J., Wang, Y., Liu, J., Yang, Y., Zhang, Y., & Luo, X. (2023). Hierarchical Ni/Ni4Mo nanosheets array on carbon fiber as a bifunctional electrocatalyst for urea-oxidation-assisted water splitting. International Journal of Hydrogen Energy, 51, 982-992. https://doi.org/10.1016/j.ijhydene.2023.07.131
  • Belgibayeva, A., Rakhatkyzy, M., Rakhmetova, A., Kalimuldina, G., Nurpeissova, A., & Bakenov, Z. (2023). Synthesis of free-standing tin phosphide/phosphate carbon composite nanofibers as anodes for lithium-ıon batteries with ımproved low-temperature performance. Small, 19, 2304062. https://doi.org/10.1002/smll.202304062
  • Hao, X., Nie, H., Ye, Z., Luo, Y., Zheng, L., & Liang, W. (2019). Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn-Al alloy composite. Materials Science and Engineering: A, 740, 218-225.https://doi.org/10.1016/j.msea.2018.10.050
  • Tang S., & Hu C. (2017). Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. Journal of Materials Science and Technology, 33(2), 117–30.https://doi.org/10.1016/j.jmst.2016.08.004
  • Tong, Y., Hu, Y., Liang, X., Zhang, Z., Li, Y., Chen, Z., & Hua, M. (2020). Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation: Ablation resistance, microstructure and damage mechanism. Ceramics International, 46(10), 14408-14415. https://doi.org/10.1016/j.ceramint.2020.02.236
  • Kubota, Y., Arai, Y., Yano, M., Inoue, R., Goto, K., & Kogo, Y. (2019). Oxidation and recession of plain weave carbon fiber reinforced ZrB2-SiC-ZrC in oxygen–hydrogen torch environment. Journal of the European Ceramic Society, 39(9), 2812-2823. https://doi.org/10.1016/j.jeurceramsoc.2019.03.010
  • Liu, Y., Cheng, Y., Ma, D., Hu, N., Han, W., Liu, D., & Wang, A. (2022). Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing. Journal of the European Ceramic Society, 42(9), 3699-3707. https://doi.org/10.1016/j.jeurceramsoc.2022.03.045
  • Vinci, A., Zoli, L., Sciti, D., Watts, J., Hilmas, G. E., & Fahrenholtz, W. G. (2019). Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C. Journal of the European Ceramic Society, 39(4), 780-787. https://doi.org/10.1016/j.jeurceramsoc.2018.11.017
  • Çelik, A. İ., Özkılıç, Y. O., Zeybek, Ö., Özdöner, N., & Tayeh, B. A. (2022). Performance assessment of fiber-reinforced concrete produced with waste lathe fibers. Sustainability, 14(19), 11817. https://doi.org/10.3390/su141911817
  • Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: a review. Journal of Materials Science, 51, 6517-6551. https://doi.org/10.1007/s10853-016-9917-4
  • Zhutovsky, S., & Nayman, S. (2022). Modeling of crack-healing by hydration products of residual cement in concrete. Construction and Building Materials, 18, 340. https://doi.org/10.1016/j.conbuildmat.2022.127682
  • Manvith Kumar Reddy, C., Ramesh, B., & Macrin, D. (2020). Effect of crystalline admixtures, polymers and fibers on self healing concrete - a review. Materials Today: Proceedings, 33, 763–70. https://doi.org/10.1016/j.matpr.2020.06.122
  • Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., & Liu, Z. (2021). The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Construction and Building Materials, 282, 122706. https://doi.org/10.1016/j.conbuildmat.2021.122706
  • Raza, S. S., Qureshi, L. A., Ali, B., Raza, A., & Khan, M. M. (2021). Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Structural Concrete, 22(1), 334–46.https://doi.org/10.1002/suco.201900439
  • Ahmad, J., González-Lezcano, R. A., Majdi, A., Ben Kahla, N., Deifalla, A. F., & El-Shorbagy, M. A. (2022). Glass fibers reinforced concrete: overview on mechanical, durability and microstructure analysis. Materials, 15(15), 5111.https://doi.org/10.3390/ma15155111
  • Li, W., Tang, S., Huang, X., Liu, W., Yang, X., & Shi, T. (2022). Carbon fiber-reinforced polymer mesh fabric as shear reinforcement in reinforced concrete beams. Journal of Building Engineering, 53, 104433.https://doi.org/10.1016/j.jobe.2022.104433
  • Yu, F., Wang, S., Fang, Y., Zhang, N., Wang, Y., & Nuermaimaiti, M. (2023). Seismic behavior of interior polyvinyl chloride–carbon fiber-reinforced polymer-confined concrete column–ring beam joints. Archives of Civil and Mechanical Engineering, 23(1), 1–19. https://doi.org/10.1007/s43452-022-00586-3
  • Jeon, E. B., Ahn, S. K., Lee, I. G., Koh, H. I., Park, J., & Kim, H. S. (2015). Investigation of mechanical/dynamic properties of carbon fiber reinforced polymer concrete for low noise railway slab. Composite Structures, 134, 27–35.https://doi.org/10.1016/j.compstruct.2015.08.082
  • Liu, G. J., Bai, E. L., Xu, J. Y., & Yang, N. (2019). Mechanical properties of carbon fiber-reinforced polymer concrete with different polymer–cement ratios. Materials, 12(21), 3530. https://doi.org/10.3390/ma12213530
  • Liu, G. J., Bai, E. L., Xu, J. Y., Yang, N., & Wang, T. J. (2020). Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates. Construction and Building Materials, 261, 119995. https://doi.org/10.1016/j.conbuildmat.2020.119995
  • Wang, Z., Ma, G., Ma, Z., & Zhang, Y. (2021). Flexural behavior of carbon fiber-reinforced concrete beams under impact loading. Cement and Concrete Composites, 118, 103910. https://doi.org/10.1016/j.cemconcomp.2020.103910
  • Huang, L., Su, L., Xie, J., Lu, Z., Li, P., & Hu, R. (2022). Dynamic splitting behaviour of ultra-high-performance concrete confined with carbon-fibre-reinforced polymer. Composite Structures, 284, 115155.https://doi.org/10.1016/j.compstruct.2021.115155
  • Farooq, M., & Banthia, N. (2022). Strain-hardening fiber reinforced polymer concrete with a low carbon footprint. Construction and Building Materials, 314, 125705. https://doi.org/10.1016/j.conbuildmat.2021.125705
  • Batarlar, B., & Saatci, S. (2022). Numerical investigation on the behavior of reinforced concrete slabs strengthened with carbon fiber textile reinforcement under impact loads. Structures, 41, 1164–77. https://doi.org/10.1016/j.istruc.2022.05.057
  • Pu, H., Hou, Y. L., Chen, J. Z., & Zhao, D. L. (2024). Graphene with different groups on the interfacial properties of carbon fiber/epoxy composites. Polymer, 290, 126512. https://doi.org/10.1016/j.polymer.2023.126512
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Derlemeler
Yazarlar

Gamze Özçakır 0000-0003-0357-4176

Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Özçakır, G. (2024). Carbon Fiber and Its Composites: Synthesis, Properties, Applications. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 240-265. https://doi.org/10.33484/sinopfbd.1393364