Araştırma Makalesi
BibTex RIS Kaynak Göster

Kerevit Optimizasyon Algoritması ile Yağlı Tip Transformatörün Ağırlık Optimizasyonu

Yıl 2025, Cilt: 10 Sayı: 1, 1 - 28, 29.06.2025
https://doi.org/10.33484/sinopfbd.1511204

Öz

Elektriğin iletim ve dağıtımında kullanılan transformatörler, manyetik alan kuvvetini kullanarak elektriğin sabit güç ve frekansta iletilmesini sağlayan elektrikli makinelerdir. Bu çalışmada farklı güç seviyelerindeki (50kVA ve 100kVA) yağlı tip güç ve dağıtım tipi transformatörün ağırlık optimizasyonu Kerevit Optimizasyon Algoritması (COA) kullanılarak hesaplanmıştır. Çalışmanın amacı ağırlık optimizasyonu yapmak ve ağırlık azaltımını hesaplamaktır. Akım yoğunluk değeri (s) ve demir kesit uygunluk değeri (C) olarak kullanılan değişken parametreler belirlenerek ağırlık optimizasyonu hesaplanmıştır. COA'lı transformatörlerin ağırlık optimizasyon problemi üzerinde detaylı bir popülasyon büyüklüğü analizi (on farklı popülasyon değeri için) ve maksimum iterasyon analizi (dört farklı maksimum iterasyon değeri için) gerçekleştirilmiştir. Değişen popülasyon büyüklüklerinin ve maksimum iterasyon sayısının COA'nın performansına olan etkileri gösterilmiştir. Elde edilen sonuçlar literatürdeki diğer çalışmalarla (GWO, FA, OOA ve ZOA) karşılaştırılarak detaylı bir şekilde analiz edilmiştir. COA ile geleneksel yaklaşımla hesaplanan transformatör demir ağırlığı daha da minimize edilirken verimlilik daha da maksimize edilmektedir. 50kVA ve 100kVA için karşılaştırma sonuçları incelendiğinde COA, GWO ve FA gibi eski sezgisel yöntemlerden daha iyi transformatör verimliliğini artırırken demir ağırlığını minimize edememiştir. Ayrıca her üç algoritmada (COA, GWO ve FA) C ve s değişkeni değerlerinin benzer olduğu görülmüştür. COA, ZOA ve OOA algoritmalarının sonuçları 50kVA ve 100kVA için incelendiğinde, en düşük toplam demir ağırlıklarını bulan sezgisel algoritma COA olurken, en yüksek verimlilik yine COA ile elde edilmiştir. COA'nın transformatör toplam demir ağırlığı sonuçları geleneksel, ZOA ve OOA algoritmalarıyla tutarlıdır, ancak GWO ve FA ile tutarlı değildir. Ayrıca, demir ağırlığına bağlı olarak hesaplanan transformatör verimliliği karşılaştırma algoritmaları arasında COA ile en iyi performansı göstermiştir. Bu çalışma, sezgisel yöntemler kullanılarak transformatör ağırlığının azaltılabileceğini ve verimliliğin artırılabileceğini göstermiştir. Transformatör demir ağırlığı hesaplama probleminin COA ile çözümü literatürde bir ilktir ve elde edilen sonuçlar literatüre kazandırılmıştır.

Kaynakça

  • Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advanced Soft Computing Its Applications, 5(1), 1-35.
  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459-471. https://doi.org/10.1007/s10898-007-9149-x
  • Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris Hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028
  • Naruei, I., & Keynia, F. (2022). Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Engineering with computers, 38(Suppl 4), 3025-3056. https://doi.org/10.1007/s00366-021-01438-z
  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, Perth, WA, Australia.
  • Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. https://doi.org/10.1109/MCI.2006.329691
  • Jia, H., Rao, H., Wen, C., & Mirjalili, S. (2023). Crayfish optimization algorithm. Artificial Intelligence Review, 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4
  • Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22. https://doi.org/10.1016/j.swevo.2015.07.005
  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information sciences, 179 (13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
  • Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, 5(1), 19-26. https://doi.org/10.1109/101.17235
  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
  • Forrest, S. (1996). Genetic algorithms. ACM computing surveys (CSUR), 28(1), 77-80. https://doi.org/10.1145/234313.234350
  • Amiri, H. (2021, August). Analysis and comparison of actual behavior of oil-type and dry-type transformers during lightning. In 2021 25th Electrical Power Distribution Conference (EPDC), Karaj, Iran.
  • Arunrungrusmi, S., Poonthong, W., Wongccharoen, S., & Mungkung, N. (2021). Optimization design evaluation and IEC 60076 standard test for large oil type transformer. Prezeglad Elektrotech, 97, 13-19.
  • Carlen, M., Xu, D., Clausen, J., Nunn, T., Ramanan, V. R., & Getson, D. M. (2010, April). Ultra high efficiency distribution transformers. In IEEE PES T&D, New Orleans, LA, USA.
  • Çelebi, M. (2007). Genetik algoritma ile yağlı bir trafonun maliyet optimizasyonu. Celal Bayar University Journal of Science, 3(1), 41-48.
  • Çelebi, M. (2008). Genetik algoritma ile kuru bir trafonun maliyet optimizasyonu. ELECO, Bursa, Turkey.
  • Akdağ, M., & Çelebi, M. (2022). The weight optimization of oil-type transformer with firefly algorithm. Dicle University Journal of Engineering, 13(2), 169-180. https://doi.org/10.24012/dumf.1075008
  • Demirdelen, T. (2018). Kuru tip transformatör optimizasyonuna yeni Bir yaklaşım: ateş böceği algoritması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(1), 87-96. https://doi.org/10.21605/cukurovaummfd.420675
  • Tosun, S., Öztürk, A., Demir, H., & Kuru, L. (2012). Kuru tip transformatörün tabu arama algoritması yöntemi ile ağırlık optimizasyonu. İleri Teknoloji Bilimleri Dergisi, 1(1), 17-26.
  • Toren, M., & Mollahasanoğlu, H. (2023). Gri Kurt optimizasyon algoritması ile güç ve dağıtım türü transformatörlerin ağırlık optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 96-103. https://doi.org/10.28948/ngumuh.1127837
  • Senthilkumar, S., Karthick, A., Madavan, R., Moshi, A. A. M., Bharathi, S. S., Saroja, S., & Dhanalakshmi, C. S. (2021). Optimization of transformer oil blended with natural ester oils using Taguchi-based grey relational analysis. Fuel, 288, 119629. https://doi.org/10.1016/j.fuel.2020.119629
  • Abdelwanis, M. I., Abaza, A., El-Sehiemy, R. A., Ibrahim, M. N., & Rezk, H. (2020). Parameter estimation of electric power transformers using coyote optimization algorithm with experimental verification. IEEE Access, 8, 50036-50044. https://doi.org/10.1109/ACCESS.2020.2976796
  • Malik, H., & Jarial, R. K. (2011, October). Fuzzy-Logic Applications in Cost Analysis of Transformer's Main Material Weight. In 2011 International Conference on Computational Intelligence and Communication Networks, Gwalior, India.
  • Pramono, W. B., Wijaya, F. D., Hadi, S. P., Wahyudi, M. S., & Indarto, A. (2023). Designing power transformer using particle swarm optimization with respect to transformer noise, weight, and losses. Designs, 7(1), 31. https://doi.org/10.3390/designs7010031
  • Hashemi, M. H., Kiliç, U., & Dikmen, S. (2023). Applications of novel heuristic algorithms in design optimization of energy-efficient distribution transformer. IEEE Access, 11, 15968-15980. https://doi.org/10.1109/ACCESS.2023.3247432
  • Mogorovic, M., & Dujic, D. (2017, May). Medium frequency transformer design and optimization. In PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
  • Garcia-Bediaga, A., Villar, I., Rujas, A., Mir, L., & Rufer, A. (2016). Multiobjective optimization of medium-frequency transformers for isolated soft-switching converters using a genetic algorithm. IEEE Transactions on Power Electronics, 32(4), 2995-3006. https://doi.org/10.1109/TPEL.2016.2572160
  • Zhang, K., Chen, W., Cao, X., Song, Z., Qiao, G., & Sun, L. (2018, November). Optimization design of high-power high-frequency transformer based on multi-objective genetic algorithm. In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China.
  • Ozturk, A., Kuru, L., Tosun, S., Demir, H., & Kuru, E. (2012). Weight optimization of a core form oil transformer by using heuristic search algorithms. Journal of Engineering Research and Applied Science, 1(1), 44-54.
  • Dehghani, M., & Trojovský, P. (2023). Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering, 8, 1126450. https://doi.org/10.3389/fmech.2022.1126450
  • Trojovská, E., Dehghani, M., & Trojovský, P. (2022). Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access, 10, 49445-49473. https://doi.org/10.1109/ACCESS.2022.3174481

Weight Optimization of Oil Type Transformer with Crayfish Optimization Algorithm

Yıl 2025, Cilt: 10 Sayı: 1, 1 - 28, 29.06.2025
https://doi.org/10.33484/sinopfbd.1511204

Öz

Transformers used in the transmission and distribution of electricity are electrical machines that ensure the transmission of electricity at constant power and frequency by using magnetic field strength. In this study, weight optimization of oil-type power and distribution-type transformers in different power levels (50kVA and 100kVA) was calculated using the Crayfish Optimization Algorithm (COA). The purpose of the study is to perform weight optimization and calculate weight reduction. The variable parameters used as current density value (s) and iron section suitability value (C) were determined and weight optimization was calculated. A detailed population size analysis (for ten different population values) and maximum iteration analysis (for four different maximum iteration values) were performed on the weight optimization problem of transformers with COA. The effects of changing population sizes and maximum iteration numbers on the performance of COA were shown. The results obtained were analyzed in detail by comparing them with other studies in the literature (GWO, FA, OOA, and ZOA). While the transformer iron weight calculated with the traditional approach with COA is further minimized, the efficiency is further maximized. When the comparison results are examined for 50kVA and 100kVA, while COA increases the efficiency of transformers better than old heuristic methods such as GWO and FA, it could not minimize the iron weight. It was also observed that the C and s variable values were similar in all three algorithms (COA, GWO, and FA). When the COA, ZOA, and OOA algorithm results are examined for 50kVA and 100kVA, the heuristic algorithm that finds the minimum total iron weights is COA, while the highest efficiency is again achieved by COA. COA's transformer total iron weight results were consistent with the traditional, ZOA and OOA algorithms, but not with GWO and FA. In addition, the transformer efficiency calculated depending on the iron weight showed the best performance with COA among the comparison algorithms. This study has shown that transformer weight can be reduced and efficiency can be increased by using intuitive methods. The solution to the transformer iron weight calculation problem with COA is a first in the literature and the obtained results were introduced to the literature.

Kaynakça

  • Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advanced Soft Computing Its Applications, 5(1), 1-35.
  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459-471. https://doi.org/10.1007/s10898-007-9149-x
  • Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris Hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028
  • Naruei, I., & Keynia, F. (2022). Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Engineering with computers, 38(Suppl 4), 3025-3056. https://doi.org/10.1007/s00366-021-01438-z
  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, Perth, WA, Australia.
  • Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. https://doi.org/10.1109/MCI.2006.329691
  • Jia, H., Rao, H., Wen, C., & Mirjalili, S. (2023). Crayfish optimization algorithm. Artificial Intelligence Review, 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4
  • Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22. https://doi.org/10.1016/j.swevo.2015.07.005
  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information sciences, 179 (13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
  • Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, 5(1), 19-26. https://doi.org/10.1109/101.17235
  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
  • Forrest, S. (1996). Genetic algorithms. ACM computing surveys (CSUR), 28(1), 77-80. https://doi.org/10.1145/234313.234350
  • Amiri, H. (2021, August). Analysis and comparison of actual behavior of oil-type and dry-type transformers during lightning. In 2021 25th Electrical Power Distribution Conference (EPDC), Karaj, Iran.
  • Arunrungrusmi, S., Poonthong, W., Wongccharoen, S., & Mungkung, N. (2021). Optimization design evaluation and IEC 60076 standard test for large oil type transformer. Prezeglad Elektrotech, 97, 13-19.
  • Carlen, M., Xu, D., Clausen, J., Nunn, T., Ramanan, V. R., & Getson, D. M. (2010, April). Ultra high efficiency distribution transformers. In IEEE PES T&D, New Orleans, LA, USA.
  • Çelebi, M. (2007). Genetik algoritma ile yağlı bir trafonun maliyet optimizasyonu. Celal Bayar University Journal of Science, 3(1), 41-48.
  • Çelebi, M. (2008). Genetik algoritma ile kuru bir trafonun maliyet optimizasyonu. ELECO, Bursa, Turkey.
  • Akdağ, M., & Çelebi, M. (2022). The weight optimization of oil-type transformer with firefly algorithm. Dicle University Journal of Engineering, 13(2), 169-180. https://doi.org/10.24012/dumf.1075008
  • Demirdelen, T. (2018). Kuru tip transformatör optimizasyonuna yeni Bir yaklaşım: ateş böceği algoritması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(1), 87-96. https://doi.org/10.21605/cukurovaummfd.420675
  • Tosun, S., Öztürk, A., Demir, H., & Kuru, L. (2012). Kuru tip transformatörün tabu arama algoritması yöntemi ile ağırlık optimizasyonu. İleri Teknoloji Bilimleri Dergisi, 1(1), 17-26.
  • Toren, M., & Mollahasanoğlu, H. (2023). Gri Kurt optimizasyon algoritması ile güç ve dağıtım türü transformatörlerin ağırlık optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 96-103. https://doi.org/10.28948/ngumuh.1127837
  • Senthilkumar, S., Karthick, A., Madavan, R., Moshi, A. A. M., Bharathi, S. S., Saroja, S., & Dhanalakshmi, C. S. (2021). Optimization of transformer oil blended with natural ester oils using Taguchi-based grey relational analysis. Fuel, 288, 119629. https://doi.org/10.1016/j.fuel.2020.119629
  • Abdelwanis, M. I., Abaza, A., El-Sehiemy, R. A., Ibrahim, M. N., & Rezk, H. (2020). Parameter estimation of electric power transformers using coyote optimization algorithm with experimental verification. IEEE Access, 8, 50036-50044. https://doi.org/10.1109/ACCESS.2020.2976796
  • Malik, H., & Jarial, R. K. (2011, October). Fuzzy-Logic Applications in Cost Analysis of Transformer's Main Material Weight. In 2011 International Conference on Computational Intelligence and Communication Networks, Gwalior, India.
  • Pramono, W. B., Wijaya, F. D., Hadi, S. P., Wahyudi, M. S., & Indarto, A. (2023). Designing power transformer using particle swarm optimization with respect to transformer noise, weight, and losses. Designs, 7(1), 31. https://doi.org/10.3390/designs7010031
  • Hashemi, M. H., Kiliç, U., & Dikmen, S. (2023). Applications of novel heuristic algorithms in design optimization of energy-efficient distribution transformer. IEEE Access, 11, 15968-15980. https://doi.org/10.1109/ACCESS.2023.3247432
  • Mogorovic, M., & Dujic, D. (2017, May). Medium frequency transformer design and optimization. In PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany.
  • Garcia-Bediaga, A., Villar, I., Rujas, A., Mir, L., & Rufer, A. (2016). Multiobjective optimization of medium-frequency transformers for isolated soft-switching converters using a genetic algorithm. IEEE Transactions on Power Electronics, 32(4), 2995-3006. https://doi.org/10.1109/TPEL.2016.2572160
  • Zhang, K., Chen, W., Cao, X., Song, Z., Qiao, G., & Sun, L. (2018, November). Optimization design of high-power high-frequency transformer based on multi-objective genetic algorithm. In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China.
  • Ozturk, A., Kuru, L., Tosun, S., Demir, H., & Kuru, E. (2012). Weight optimization of a core form oil transformer by using heuristic search algorithms. Journal of Engineering Research and Applied Science, 1(1), 44-54.
  • Dehghani, M., & Trojovský, P. (2023). Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering, 8, 1126450. https://doi.org/10.3389/fmech.2022.1126450
  • Trojovská, E., Dehghani, M., & Trojovský, P. (2022). Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access, 10, 49445-49473. https://doi.org/10.1109/ACCESS.2022.3174481
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Emine Baş 0000-0003-4322-6010

Lütfi Batuhan Güner 0009-0002-2935-7495

Yayımlanma Tarihi 29 Haziran 2025
Gönderilme Tarihi 5 Temmuz 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Baş, E., & Güner, L. B. (2025). Weight Optimization of Oil Type Transformer with Crayfish Optimization Algorithm. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 1-28. https://doi.org/10.33484/sinopfbd.1511204


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.