Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Ceftriaxone on Penicillin-Induced Epileptiform Activity in Rats: An Electrophysiological Study

Yıl 2024, , 34 - 46, 31.03.2024
https://doi.org/10.31832/smj.1369398

Öz

Purpose: Epilepsy is a set of chronic neurological disorders characterized by seizures associated with abnormal and uncontrolled neuronal activity of the brain. Glutamate is the main excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter-2 (EAAT2), one of the major glutamate transporters, is responsible for total glutamate intake. Ceftriaxone is a β-lactam antibiotic that increases EAAT-2 expression and functional activity. This study aims to investigate the effects of ceftriaxone on penicillin- induced epileptiform activity by using electrocorticography (ECoG) in anesthetized rats.
Method: In this study, 35 Wistar male rats were used. The rats were divided into five groups of 7. In group 1, 2.5 μL 500 IU of penicillin intracranially (i.c.) and 1 ml saline solution and intraperitoneally (i.p.) were given, respectively. In group 2, 200 mg/kg, i.p. of ceftriaxone was administered 30 minutes after penicillin. In group 3, 400 mg/kg of ceftriaxone was administered i.p. 30 minutes after penicillin. 500 mg/kg of sodium valproate was administered i.p. following 30 minutes of penicillin in group 4. In group 5, 400 mg/kg, i.p. of ceftriaxone and 500 mg/kg, i.p. of sodium valproate were administered 30 minutes after penicillin. After the surgical procedure the rats were placed in a stereotaxic device and electrocorticogram recordings were captured for 210 minutes.
Results: The acute treatment of ceftriaxone reduced spike-wave frequency and spike-wave amplitude of penicillin-induced epileptiform activity in the rats.
Conclusion: These findings suggest that acute ceftriaxone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Ceftriaxone may have an anti-epileptogenic potential.Materials and Methods: In this study, 35 Wistar male rats were used. The rats were divided into five groups of 7. In group 1, 2.5 μL 500 IU of penicillin intracranially (i.c.) and 1 ml saline solution and intraperitoneally (i.p.) were given, respectively. In group 2, 200 mg/kg, i.p. of ceftriaxone was administered 30 minutes after penicillin. In group 3, 400 mg/kg of ceftriaxone was administered i.p. 30 minutes after penicillin. 500 mg/kg of sodium valproate was administered i.p. following 30 minutes of penicillin in group 4. In group 5, 400 mg/kg, i.p. of ceftriaxone and 500 mg/kg, i.p. of sodium valproate were administered 30 minutes after penicillin. The rats were placed in a stereotaxic device after the procedure, and electrocorticogram recordings were captured for 180 minutes.
Results: The acute treatment of ceftriaxone reduced spike-wave frequency and spike-wave amplitude of penicillin-induced epileptiform activity in the rats.

Conclusion: These findings suggest that acute ceftriaxone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Ceftriaxone may has an anti-epileptogenic potential.

Kaynakça

  • 1. Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol. 2021;106(8):1814-1828.
  • 2. Serikawa T, Mashimo T, Kuramoto T, Voigt B, Ohno Y, Sasa M. Advances on genetic rat models of epilepsy. Exp Anim. 2015; 64(1): 1-7.
  • 3. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: New advances. Lancet. 2015; 385(9971):884-98.
  • 4. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799-817.
  • 5. Barker-Haliski M, White HS, Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med. 2015; 5(8): a022863.
  • 6. Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry. 2018;8(2):51-63.
  • 7. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, Van Veelen CW, Van Rijen PC, Van Nieuwenhuizen O, Gispen WH, De Graan PN. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy Brain. 2002; 125(Pt 1): 32-43.
  • 8. Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997;276:1699-702.
  • 9. Samuelsson C, Kumlien E., Flink R., Lindholm D, Ronne- Engstrom E. Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett. 2000; 289:185-188.
  • 10. Lopes MW, Soares FM, de Mello N, Nunes JC, Cajado AG, de Brito D, de Cordova FM, da Cunha RM, Walz R, Leal RB. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp Brain Res. 2013;226(2):153-63.
  • 11. Pinto Pereira LM, Phillips M, Ramlal H, Teemul K, Prabhakar P. Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy. BMC Infect Dis. 2004;4(1): 59.
  • 12. Liu CH, Jiao H, Guo ZH, Peng Y, Wang WZ. Up-regulated GLT-I resists glutamate toxicity and attenuates glutamate- induced calcium loading in cultured neurocytes. Basic Clin Pharmacol Toxicol. 2013;112(1):19-24.
  • 13. Soni N, Koushal P, Reddy BV, Deshmukh R, Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav. 2015; 48:4-14.
  • 14. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 2012;60(7):1024– 36.
  • 15. Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. J Physiol Paris 2014;108:256–62.
  • 16. Koomhin P, Tilokskulchai K, Tapechum S. Ceftriaxone improves spatial learning and memory in chronic cerebral hypoperfused rats. ScienceAsia 2012;38:356–63.
  • 17. Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood). 2008;233(11):1389-94.
  • 18. Uyanikgil Y, Ozkeskek K, Cavusoğlu T, Solmaz V, Tumer MK, Erbas O. Positive effects of ceftriaxone on pentylenetetrazol- induced convulsion model in rats. Int. J. Neurosci. 2016; 126(1):70-5
  • 19. Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, Wilcox KS. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol. 2019; 318:50-60.
  • 20. Contreras D. Experimental models in epilepsy. Revista de Neurol, 2000;30:370-376.
  • 21. Garcia Garcia ME, Garcia Morales I, Matías Guiu J. Experimental models in epilepsy. Neurologia. 2010; 25(3):181- 188.
  • 22. Allen MJ, Sabir S, Sharma S. GABA Receptor. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023;13.
  • 23. Chen TS, Huang TH, Lai MC, Huang CW. The Role of Glutamate Receptors in Epilepsy. Biomedicines. 2023;11(3):783.
  • 24. Paxinos G, Watson C. The Rat Brain in the Stereotaxic Coordinates. 3rd ed. London: Academic Press; 1982.
  • 25. Jing LI, Qi XU. Anticonvulsant effect of ceftriaxone in temporal lobe epilepsy. Basic & Clinical Medicine. 2017;37(5):658
  • 26. Koutroumanidou E, Kimbaris A, Kortsaris A, Bezirtzoglou E, Polissiou M, Charalabopoulos K, Pagonopoulou O. Increased seizure latency and decreased severity of pentylenetetrazol- induced seizures in mice after essential oil administration. Epilepsy Res Treat. 2013;2013:532657.
  • 27. Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure. 2021; 91:213-227.
  • 28. Brown C, Smith C. Sodium valproate. Practical diabetes 2018;35(5):186-87.
  • 29. Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S., Avoli, M. (2010). Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. The Lancet Neurology, 2010;9(4): 413-424.
  • 30. White HS. Animal Models for Evaluating Antiepileptogenesis. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
  • 31. De Deyn PP, D’Hooge R, Marescau B, Pei YQ. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res. 1992;12(2):87-110.
  • 32. Marangoz C. Deneysel epilepsi modelleri. Journal of Experimental and Clinical Medicine. 1997:14(3):147-186.
  • 33. Arık AE, Bagırıcı F, Sefil F, Marangoz C. Effect of levetiracetam on penicillin-induced epileptic activity in rats. Acta Neurobiol Exp. 2014;74:266-275.
  • 34. Erfanparast A, Tamaddonfard E. Effects of intracortical microinjection of vitamin B12 on penicillin-induced epileptiform activity in rats. Acta Neurobiol Exp (Wars). 2015;75(2):200–7.
  • 35. De Sarro A, Ammendola D, Zappala M, Grasso S, De Sarro GB. Relationship between structure and convulsant properties of some β-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob Agents Chemother 1995;39: 232–37.
  • 36. Thöne-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, Lucht K, Hörtnagl H, Godes M, Müller S, Rumschüssel K, Funke-Kaiser H, Villringer A, Steckelings UM, Unger T. The β-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens. 2008; 26(12):2426-35.
  • 37. Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson’s disease dementia. Brain Res Bull. 2017; 132:129-138.
  • 38. Bellesi M, Vyazovskiy VV, Tononi G, Cirelli C, Conti F. Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone. PLoS One 2012; 7, e34139.
  • 39. Ho SC, Hsu CC, Pawlak CR, Tikhonova MA, Lai TJ, Amstislavskaya TG, Ho YJ. Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson’s disease rat model. Behav Brain Res. 2014;268:177-84.
  • 40. Tikhonova MA, Ho SC, Akopyan AA, Kolosova NG, Weng JC, Meng WY, Lin CL, Amstislavskaya TG, Ho YJ. Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res. 2017; 330:8-16.
  • 41. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433(7021): 73-77.
  • 42. Feng D, Wang W, Dong Y, Wu L, Huang J, Ma Y, Zhang Z, Wu S, Gao G, Qin H. Ceftriaxone alleviates early brain injury after subarachnoid hemorrhage by increasing excitatory amino acid transporter 2 expression via the PI3K/Akt/ NF-κB signaling pathway. Neuroscience. 2014; 268:21- 32.
  • 43. Trotti D, Aoki M, Pasinelli P, et al. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 2001;276:576-82.
  • 44. Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 1997;56:901-11.
  • 45. Martin LJ, Brambrink AM, Lehmann C, et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 1997;42:335-48.
  • 46. Danbolt NC, Furness, DN, Zhou Y. Neuronal vs. Glial glutamate uptake: Resolving the conundrum. Neurochemistry International, 2016; 98:29-45.
  • 47. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434-41.
  • 48. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure- induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015;2015:745613.
  • 49. Altas M, Meydan S, Aras M, et al. Effects of ceftriaxone on ischemia/reperfusion injury in rat brain. J Clin Neurosci 2013;20:457-61.
  • 50. Karaman I, Kizilay-Ozfidan G, Karadag CH, Ulugol A. Lack of effect of ceftriaxone, a GLT-1 transporter activator, on spatial memory in mice. Pharmacol Biochem Behav 2013;108:61–5. 51.
  • 51. Matos-Ocasio F, Hernandez-Lopez A, Thompson KJ. Ceftriaxone, a GLT-1 transporter activator, disrupts hippocampal learning in rats. Pharmacol Biochem Behav 2014;122:118–21.
  • 52. Macaluso A, Bernabucci M, Trabucco A, et al. Analgesic effect of a single preoperative dose of the antibiotic ceftriaxone in humans. J Pain 2013;14(6):604–12.
  • 53. Nicholson KJ, Gilliland TM, Winkelstein BA. Upregulation of GLT-1 by treatment with ceftriaxone alleviates radicular pain by reducing spinal astrocyte activation and neuronal hyperexcitability. J Neurosci Res 2014;92(1):116–29.
  • 54. Abulseoud OA, Camsari UM, Ruby CL, Kasasbeh A, Choi S, Choi DS. Attenuation of ethanol withdrawal by ceftriaxone- induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology 2014;39:1674-84.
  • 55. Sugimoto M, Uchida I, Mashimo T, Yamazaki S, Hatano K, Ikeda F, Mochizuki Y, Terai T, Matsuoka N. Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins. Neuropharmacology 2003;45:304–14.
  • 56. Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. Journal of Epilepsy Research 2016;6(1), 8.

Penı̇sı̇lı̇n ile Oluşturulan Deneysel Epilepsi Modelinde Seftrı̇aksonun Etkı̇sı̇: Elektrofı̇zyolojı̇k Bı̇r Çalışma

Yıl 2024, , 34 - 46, 31.03.2024
https://doi.org/10.31832/smj.1369398

Öz

Amaç: Epilepsi, beynin anormal ve koordinesiz nöronal aktivitesi ile ilişkili nöbetlerle karakterize bir dizi kronik nörolojik bozukluktur. Glutamat, merkezi sinir sistemindeki ana uyarıcı nörotransmitterdir. Başlıca glutamat taşıyıcılarından biri olan eksitatör amino asit taşıyıcı-2 (EAAT2), toplam glutamat alımından sorumludur. Seftriakson, EAAT-2 ekspresyonunu ve fonksiyonel aktivitesini artıran bir β-laktam antibiyotiktir. Bu çalışmanın amacı, seftriaksonun penisilin ile indüklenen epileptiform aktivite üzerindeki etkilerini anestezi uygulanmış sıçanlarda elektrokortikografi (ECoG) kullanarak araştırmaktır.
Yöntem ve Gereçler: Bu çalışmada 35 Wistar erkek sıçan kullanıldı. Sıçanlar 7'şerli beş gruba ayrıldı. Grup 1'e sırasıyla 2.5 μL 500 IU penisilin intrakraniyal (i.c.) ve 1 ml salin solüsyonu intraperitoneal (i.p.) olarak verildi. Grup 2'de penisilinden 30 dakika sonra 200 mg/kg, i.p. seftriakson uygulandı. Grup 3'te penisilinden 30 dakika sonra 400 mg/kg seftriakson i.p. olarak uygulandı. Grup 4'te penisilinden 30 dakika sonra 500 mg/kg sodyum valproat i.p. olarak uygulandı. Grup 5'te penisilinden 30 dakika sonra 400 mg/kg i.p. seftriakson ve 500 mg/kg i.p. sodyum valproat uygulanmıştır. Sıçanlar işlemden sonra stereotaksik cihaza yerleştirildi ve 180 dakika boyunca elektrokortikogram kayıtları alındı.
Bulgular: Seftriaksonun akut tedavisi sıçanlarda penisilin ile indüklenen epileptiform aktivitenin diken dalga frekansını ve diken dalga genliğini azaltmıştır.
Sonuç: Bu bulgular, akut seftriaksonun penisilin ile indüklenen fokal başlangıçlı epileptik aktivite üzerinde antikonvülsan bir etkiye sahip olabileceğini göstermektedir. Seftriaksonun anti-epileptojenik bir potansiyeli olabilir.

Kaynakça

  • 1. Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol. 2021;106(8):1814-1828.
  • 2. Serikawa T, Mashimo T, Kuramoto T, Voigt B, Ohno Y, Sasa M. Advances on genetic rat models of epilepsy. Exp Anim. 2015; 64(1): 1-7.
  • 3. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: New advances. Lancet. 2015; 385(9971):884-98.
  • 4. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799-817.
  • 5. Barker-Haliski M, White HS, Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med. 2015; 5(8): a022863.
  • 6. Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry. 2018;8(2):51-63.
  • 7. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, Van Veelen CW, Van Rijen PC, Van Nieuwenhuizen O, Gispen WH, De Graan PN. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy Brain. 2002; 125(Pt 1): 32-43.
  • 8. Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997;276:1699-702.
  • 9. Samuelsson C, Kumlien E., Flink R., Lindholm D, Ronne- Engstrom E. Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett. 2000; 289:185-188.
  • 10. Lopes MW, Soares FM, de Mello N, Nunes JC, Cajado AG, de Brito D, de Cordova FM, da Cunha RM, Walz R, Leal RB. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp Brain Res. 2013;226(2):153-63.
  • 11. Pinto Pereira LM, Phillips M, Ramlal H, Teemul K, Prabhakar P. Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy. BMC Infect Dis. 2004;4(1): 59.
  • 12. Liu CH, Jiao H, Guo ZH, Peng Y, Wang WZ. Up-regulated GLT-I resists glutamate toxicity and attenuates glutamate- induced calcium loading in cultured neurocytes. Basic Clin Pharmacol Toxicol. 2013;112(1):19-24.
  • 13. Soni N, Koushal P, Reddy BV, Deshmukh R, Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav. 2015; 48:4-14.
  • 14. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 2012;60(7):1024– 36.
  • 15. Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. J Physiol Paris 2014;108:256–62.
  • 16. Koomhin P, Tilokskulchai K, Tapechum S. Ceftriaxone improves spatial learning and memory in chronic cerebral hypoperfused rats. ScienceAsia 2012;38:356–63.
  • 17. Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood). 2008;233(11):1389-94.
  • 18. Uyanikgil Y, Ozkeskek K, Cavusoğlu T, Solmaz V, Tumer MK, Erbas O. Positive effects of ceftriaxone on pentylenetetrazol- induced convulsion model in rats. Int. J. Neurosci. 2016; 126(1):70-5
  • 19. Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, Wilcox KS. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol. 2019; 318:50-60.
  • 20. Contreras D. Experimental models in epilepsy. Revista de Neurol, 2000;30:370-376.
  • 21. Garcia Garcia ME, Garcia Morales I, Matías Guiu J. Experimental models in epilepsy. Neurologia. 2010; 25(3):181- 188.
  • 22. Allen MJ, Sabir S, Sharma S. GABA Receptor. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023;13.
  • 23. Chen TS, Huang TH, Lai MC, Huang CW. The Role of Glutamate Receptors in Epilepsy. Biomedicines. 2023;11(3):783.
  • 24. Paxinos G, Watson C. The Rat Brain in the Stereotaxic Coordinates. 3rd ed. London: Academic Press; 1982.
  • 25. Jing LI, Qi XU. Anticonvulsant effect of ceftriaxone in temporal lobe epilepsy. Basic & Clinical Medicine. 2017;37(5):658
  • 26. Koutroumanidou E, Kimbaris A, Kortsaris A, Bezirtzoglou E, Polissiou M, Charalabopoulos K, Pagonopoulou O. Increased seizure latency and decreased severity of pentylenetetrazol- induced seizures in mice after essential oil administration. Epilepsy Res Treat. 2013;2013:532657.
  • 27. Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure. 2021; 91:213-227.
  • 28. Brown C, Smith C. Sodium valproate. Practical diabetes 2018;35(5):186-87.
  • 29. Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S., Avoli, M. (2010). Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. The Lancet Neurology, 2010;9(4): 413-424.
  • 30. White HS. Animal Models for Evaluating Antiepileptogenesis. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
  • 31. De Deyn PP, D’Hooge R, Marescau B, Pei YQ. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res. 1992;12(2):87-110.
  • 32. Marangoz C. Deneysel epilepsi modelleri. Journal of Experimental and Clinical Medicine. 1997:14(3):147-186.
  • 33. Arık AE, Bagırıcı F, Sefil F, Marangoz C. Effect of levetiracetam on penicillin-induced epileptic activity in rats. Acta Neurobiol Exp. 2014;74:266-275.
  • 34. Erfanparast A, Tamaddonfard E. Effects of intracortical microinjection of vitamin B12 on penicillin-induced epileptiform activity in rats. Acta Neurobiol Exp (Wars). 2015;75(2):200–7.
  • 35. De Sarro A, Ammendola D, Zappala M, Grasso S, De Sarro GB. Relationship between structure and convulsant properties of some β-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob Agents Chemother 1995;39: 232–37.
  • 36. Thöne-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, Lucht K, Hörtnagl H, Godes M, Müller S, Rumschüssel K, Funke-Kaiser H, Villringer A, Steckelings UM, Unger T. The β-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens. 2008; 26(12):2426-35.
  • 37. Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson’s disease dementia. Brain Res Bull. 2017; 132:129-138.
  • 38. Bellesi M, Vyazovskiy VV, Tononi G, Cirelli C, Conti F. Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone. PLoS One 2012; 7, e34139.
  • 39. Ho SC, Hsu CC, Pawlak CR, Tikhonova MA, Lai TJ, Amstislavskaya TG, Ho YJ. Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson’s disease rat model. Behav Brain Res. 2014;268:177-84.
  • 40. Tikhonova MA, Ho SC, Akopyan AA, Kolosova NG, Weng JC, Meng WY, Lin CL, Amstislavskaya TG, Ho YJ. Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res. 2017; 330:8-16.
  • 41. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433(7021): 73-77.
  • 42. Feng D, Wang W, Dong Y, Wu L, Huang J, Ma Y, Zhang Z, Wu S, Gao G, Qin H. Ceftriaxone alleviates early brain injury after subarachnoid hemorrhage by increasing excitatory amino acid transporter 2 expression via the PI3K/Akt/ NF-κB signaling pathway. Neuroscience. 2014; 268:21- 32.
  • 43. Trotti D, Aoki M, Pasinelli P, et al. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 2001;276:576-82.
  • 44. Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 1997;56:901-11.
  • 45. Martin LJ, Brambrink AM, Lehmann C, et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 1997;42:335-48.
  • 46. Danbolt NC, Furness, DN, Zhou Y. Neuronal vs. Glial glutamate uptake: Resolving the conundrum. Neurochemistry International, 2016; 98:29-45.
  • 47. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434-41.
  • 48. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure- induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015;2015:745613.
  • 49. Altas M, Meydan S, Aras M, et al. Effects of ceftriaxone on ischemia/reperfusion injury in rat brain. J Clin Neurosci 2013;20:457-61.
  • 50. Karaman I, Kizilay-Ozfidan G, Karadag CH, Ulugol A. Lack of effect of ceftriaxone, a GLT-1 transporter activator, on spatial memory in mice. Pharmacol Biochem Behav 2013;108:61–5. 51.
  • 51. Matos-Ocasio F, Hernandez-Lopez A, Thompson KJ. Ceftriaxone, a GLT-1 transporter activator, disrupts hippocampal learning in rats. Pharmacol Biochem Behav 2014;122:118–21.
  • 52. Macaluso A, Bernabucci M, Trabucco A, et al. Analgesic effect of a single preoperative dose of the antibiotic ceftriaxone in humans. J Pain 2013;14(6):604–12.
  • 53. Nicholson KJ, Gilliland TM, Winkelstein BA. Upregulation of GLT-1 by treatment with ceftriaxone alleviates radicular pain by reducing spinal astrocyte activation and neuronal hyperexcitability. J Neurosci Res 2014;92(1):116–29.
  • 54. Abulseoud OA, Camsari UM, Ruby CL, Kasasbeh A, Choi S, Choi DS. Attenuation of ethanol withdrawal by ceftriaxone- induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology 2014;39:1674-84.
  • 55. Sugimoto M, Uchida I, Mashimo T, Yamazaki S, Hatano K, Ikeda F, Mochizuki Y, Terai T, Matsuoka N. Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins. Neuropharmacology 2003;45:304–14.
  • 56. Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. Journal of Epilepsy Research 2016;6(1), 8.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Makaleler
Yazarlar

Zeynep Kasap Acungil 0000-0003-0475-7628

Şeyma Özsoy 0000-0003-1783-3618

Erken Görünüm Tarihi 15 Mart 2024
Yayımlanma Tarihi 31 Mart 2024
Gönderilme Tarihi 1 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

AMA Kasap Acungil Z, Özsoy Ş. The Effect of Ceftriaxone on Penicillin-Induced Epileptiform Activity in Rats: An Electrophysiological Study. Sakarya Tıp Dergisi. Mart 2024;14(1):34-46. doi:10.31832/smj.1369398

30703

SMJ'de yayınlanan makaleler, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı kapsamında lisanslanır