Derleme
BibTex RIS Kaynak Göster

Yeşil Bina Tasarımında Sürdürülebilir Malzemeler: LCA Odaklı İnceleme

Yıl 2025, Cilt: 8 Sayı: 2, 263 - 271, 12.12.2025
https://doi.org/10.51764/smutgd.1827440
https://izlik.org/JA93BJ58BP

Öz

Yeşil bina tasarımında malzeme seçimi, artan karbon salımları, enerji kullanımı ve kaynak tüketimi nedeniyle sürdürülebilirlik performansının en kritik bileşenlerinden biri olarak öne çıkmaktadır. Güncel yaklaşımlar, yapı malzemelerinin yalnızca teknik özellikleriyle değil, yaşam döngüsü boyunca ortaya çıkan çevresel etkileriyle birlikte değerlendirilmesini gerektirmektedir. Bu doğrultuda LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment Environmental Assessment Method) ve DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen – German Sustainable Building Council) gibi uluslararası sertifikasyon sistemleri, malzeme kategorilerine ilişkin kriterlerini giderek daha ölçülebilir, karşılaştırılabilir ve LCA (Life Cycle Assessment) temelli bir yapıya dönüştürmektedir.
Bu derleme, sürdürülebilir malzeme seçimini belirleyen temel unsurları incelemekte; düşük karbonlu üretim yöntemleri, geri dönüştürülmüş içerik, biyobazlı malzemeler, VOC (Volatile Organic Compounds) emisyonlarının azaltılması ve yaşam döngüsü değerlendirmesi gibi güncel araştırma temalarını bütüncül bir çerçevede ele almaktadır. Literatürdeki eğilimler, malzeme kaynaklı çevresel etkilerin azaltılmasına yönelik sertifikasyon puan yapılarının güçlendiğini, döngüsel ekonomi ilkelerinin tasarım süreçlerine daha fazla entegre edildiğini ve LCA kullanımının yaygınlaştığını göstermektedir.
Bununla birlikte, veri tabanı farklılıkları, metodolojik uyumsuzluklar, bölgesel veri eksiklikleri ve özellikle doğal malzemelerin uzun dönem performansına ilişkin sınırlı deneysel kanıtlar, sürdürülebilir malzeme araştırmalarındaki başlıca sınırlılıklar olarak ortaya çıkmaktadır. Bu çalışma, malzeme özellikleri, yaşam döngüsü değerlendirmesi ve sertifikasyon kriterlerini tek bir çerçevede bir araya getirerek hem akademik araştırmalar hem de uygulama pratikleri için yönlendirici bir değerlendirme sunmaktadır.

Kaynakça

  • Aghaei Chadegani, A., Sadeghi, M., Marzouk, M., & Khatib, J. (2022). “Material-related credits in international green building rating systems: A comparative review.” Journal of Building Engineering, 57, 104867. https://doi.org/10.1016/j.jobe.2022.104867
  • Assefa, S., Lee, H.-Y., & Shiue, F.-J. (2022). “Sustainability performance of green building rating systems (GBRSs) in an integration model.” Buildings, 12(2), 208. https://doi.org/10.3390/buildings12020208
  • BRE Global. (2023). Breeam 2018 materials – Technical manual. https://www.breeam.com
  • Chi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). “Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China.” Journal of Cleaner Production, 256, 120749. https://doi.org/10.1016/j.jclepro.2020.120749
  • Çimen, A., & Çimen, S. (2024). “Modern hastaneler: İnovatif malzemelerle sağlık ve sürdürülebilirlik.” Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 7(1), 70-75. https://doi.org/10.51764/smutgd.1500779
  • Çimen, S. (2025). “Mechanical and high-temperature behavior of lightweight concrete with Zeytindalı and Bayburt stone waste.” Discov Appl Sci 7, 1186. https://doi.org/10.1007/s42452-025-07781-w
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). “Effect of boron wastes on the engineering properties of perlite based brick.” Türk Doğa ve Fen Dergisi, 9(2), 50-56. https://doi.org/10.46810/tdfd.731005
  • De Luca, P., Carbone, I., & Nagy, J. B. (2017). “Green building materials: A review of state of the art studies of innovative materials.” Journal of Green Building, 12(4), 141–161. https://doi.org/10.3992/1943-4618.12.4.141
  • Doan, D. T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A., & Tookey, J. (2017). “A critical comparison of green building rating systems.” Building and Environment, 123, 243–260. https://doi.org/10.1016/j.buildenv.2017.07.007
  • Firoozi, A. A., Firoozi, A. A., Oyeboji, D. O., Avudaiappan, S., & Saavedra Flores, E. (2024). “Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions.” Results in Engineering, 24, 103521. https://doi.org/10.1016/j.rineng.2024.103521
  • Global Alliance for Buildings and Construction. (2023). Global status report for buildings and construction 2023. https://globalabc.org
  • Goodman, N., Rajagopalan, P., Francis, M., Nematollahi, N., Vardoulakis, S., & Steinemann, A. (2024). “Indoor volatile organic compounds in prefabricated timber buildings—Challenges and opportunities for sustainability.” Buildings, 14(12), 3858. https://doi.org/10.3390/buildings14123858
  • Green Building Information Gateway (GBIG). (2024). LEED v4.1 materials update report. https://www.gbig.org Huang, Z., Zhou, H., Miao, Z., Tang, H., Lin, B., & Zhuang, W. (2024). “Life-cycle carbon emissions (LCCE) of buildings: Implications, calculations, and reductions.” Engineering, 35, 115–139. https://doi.org/10.1016/j.eng.2023.10.017
  • International Energy Agency (IEA). (2022). Buildings sector energy & CO₂ emissions. https://iea.org
  • ISO. (2020a). ISO 14040: Environmental management — Life cycle assessment — Principles and framework.
  • ISO. (2020b). ISO 14044: Life cycle assessment — Requirements and guidelines.
  • Kibert, C. J. (2022). Sustainable construction: Green building design and delivery (5th ed.). John Wiley & Sons. Liu, T., Chen, L., Yang, M., Sandanayake, M., Miao, P., Shi, Y., & Yap, P.-S. (2022). “Sustainability considerations of green buildings: A detailed overview on current advancements and future considerations.” Sustainability, 14(21), 14393. https://doi.org/10.3390/su142114393
  • Marchi, L., Antonini, E., & Politi, S. (2021). Green building rating systems (GBRSs). Encyclopedia, 1(4), 998–1009. https://doi.org/10.3390/encyclopedia1040076
  • Masniari, O., & Koestoer, R. H. (2024). “Sustainable building materials for green construction: A review.” International Research Journal of Advanced Engineering and Science, 9(2), 68–72.
  • Park, J. (2017). “Critical review of the material criteria of building sustainability assessment tools.” Sustainability, 9(2), 186. https://doi.org/10.3390/su9020186
  • Röck, M., Saade, M., Balouktsi, M., Rasmussen, F. N., & Passer, A. (2020). Embodied GHG emissions in buildings—A review of current trends. Building and Environment, 181, 106445. https://doi.org/10.1016/j.buildenv.2020.106445
  • Taç, G., & Emekci, Ş. (2025). “Life cycle assessment and sustainable construction: A comprehensive review from theoretical foundations to practical strategies and innovative methods.” PLANARCH – Design and Planning Research, 9(1), 79–89. https://doi.org/10.54864/planarch.1527015
  • Tazmeen, T., & Mir, B. A. (2024). “Sustainability through materials: A review of green options in building construction.” Cleaner Materials, 5, 100219. https://doi.org/10.1016/j.rsurfi.2024.100206
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). “Effects of boric acid additive to pumice aggregate lightweight concrete properties.” International Journal of Scientific and Technological Research, 6(9), 1-10. https://doi.org/10.7176/JSTR/6-09-01
  • Wu, J., Ye, X., & Cui, H. (2025). “Recycled materials in construction: Trends, status, and future of research.” Sustainability, 17, 2636. https://doi.org/10.3390/ su17062636
  • Yahia, A. K. M., Rahman, M. M., Shahjalal, M., & Morshed, A. (2024). “Sustainable materials selection in building design and construction.” International Journal of Science and Engineering, 1(4), 106–119. https://doi.org/10.62304/ijse.v1i04.198
  • Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). “Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of sustainability performance.” Building and Environment, 46(5), 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002
  • Zhang, R., Zhang, Y., Sun, G., & Wei, H. (2025). “Low-carbon and recycled mineral composite materials for sustainable infrastructure: A comprehensive review.” Sustainability, 17(17), 7908. https://doi.org/10.3390/su17177908

Sustainable Materials in Green Building Design: A LCA-Focused Review

Yıl 2025, Cilt: 8 Sayı: 2, 263 - 271, 12.12.2025
https://doi.org/10.51764/smutgd.1827440
https://izlik.org/JA93BJ58BP

Öz

Material selection in green building design has become one of the most critical components of sustainability performance due to increasing carbon emissions, energy consumption, and resource depletion in the construction sector. Contemporary approaches require building materials to be evaluated not only by their technical properties but also by the environmental impacts generated throughout their entire life cycle. Accordingly, international certification systems such as LEED, BREEAM (Building Research Establishment Environmental Assessment Method), and DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen – German Sustainable Building Council) have progressively transformed their material-related criteria into a more measurable, comparable, and LCA (Life Cycle Assessment )based structure.
This review examines the fundamental factors shaping sustainable material selection and synthesizes current research themes including low-carbon production methods, recycled content, biobased materials, VOC (Volatile Organic Compounds) emission reduction, and life-cycle assessment within an integrated framework. Trends in the literature indicate that credit structures targeting the reduction of material related environmental impacts have strengthened, circular economy principles are increasingly embedded in design processes, and the use of LCA has become more widespread.
However, database inconsistencies, methodological variations, regional data limitations, and the scarcity of long-term experimental evidence particularly for natural materials remain key constraints within the field of sustainable materials research. By bringing together material properties, life-cycle assessment perspectives, and certification criteria, this review provides a comprehensive reference that supports both academic investigations and practical applications.

Kaynakça

  • Aghaei Chadegani, A., Sadeghi, M., Marzouk, M., & Khatib, J. (2022). “Material-related credits in international green building rating systems: A comparative review.” Journal of Building Engineering, 57, 104867. https://doi.org/10.1016/j.jobe.2022.104867
  • Assefa, S., Lee, H.-Y., & Shiue, F.-J. (2022). “Sustainability performance of green building rating systems (GBRSs) in an integration model.” Buildings, 12(2), 208. https://doi.org/10.3390/buildings12020208
  • BRE Global. (2023). Breeam 2018 materials – Technical manual. https://www.breeam.com
  • Chi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). “Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China.” Journal of Cleaner Production, 256, 120749. https://doi.org/10.1016/j.jclepro.2020.120749
  • Çimen, A., & Çimen, S. (2024). “Modern hastaneler: İnovatif malzemelerle sağlık ve sürdürülebilirlik.” Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 7(1), 70-75. https://doi.org/10.51764/smutgd.1500779
  • Çimen, S. (2025). “Mechanical and high-temperature behavior of lightweight concrete with Zeytindalı and Bayburt stone waste.” Discov Appl Sci 7, 1186. https://doi.org/10.1007/s42452-025-07781-w
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). “Effect of boron wastes on the engineering properties of perlite based brick.” Türk Doğa ve Fen Dergisi, 9(2), 50-56. https://doi.org/10.46810/tdfd.731005
  • De Luca, P., Carbone, I., & Nagy, J. B. (2017). “Green building materials: A review of state of the art studies of innovative materials.” Journal of Green Building, 12(4), 141–161. https://doi.org/10.3992/1943-4618.12.4.141
  • Doan, D. T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A., & Tookey, J. (2017). “A critical comparison of green building rating systems.” Building and Environment, 123, 243–260. https://doi.org/10.1016/j.buildenv.2017.07.007
  • Firoozi, A. A., Firoozi, A. A., Oyeboji, D. O., Avudaiappan, S., & Saavedra Flores, E. (2024). “Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions.” Results in Engineering, 24, 103521. https://doi.org/10.1016/j.rineng.2024.103521
  • Global Alliance for Buildings and Construction. (2023). Global status report for buildings and construction 2023. https://globalabc.org
  • Goodman, N., Rajagopalan, P., Francis, M., Nematollahi, N., Vardoulakis, S., & Steinemann, A. (2024). “Indoor volatile organic compounds in prefabricated timber buildings—Challenges and opportunities for sustainability.” Buildings, 14(12), 3858. https://doi.org/10.3390/buildings14123858
  • Green Building Information Gateway (GBIG). (2024). LEED v4.1 materials update report. https://www.gbig.org Huang, Z., Zhou, H., Miao, Z., Tang, H., Lin, B., & Zhuang, W. (2024). “Life-cycle carbon emissions (LCCE) of buildings: Implications, calculations, and reductions.” Engineering, 35, 115–139. https://doi.org/10.1016/j.eng.2023.10.017
  • International Energy Agency (IEA). (2022). Buildings sector energy & CO₂ emissions. https://iea.org
  • ISO. (2020a). ISO 14040: Environmental management — Life cycle assessment — Principles and framework.
  • ISO. (2020b). ISO 14044: Life cycle assessment — Requirements and guidelines.
  • Kibert, C. J. (2022). Sustainable construction: Green building design and delivery (5th ed.). John Wiley & Sons. Liu, T., Chen, L., Yang, M., Sandanayake, M., Miao, P., Shi, Y., & Yap, P.-S. (2022). “Sustainability considerations of green buildings: A detailed overview on current advancements and future considerations.” Sustainability, 14(21), 14393. https://doi.org/10.3390/su142114393
  • Marchi, L., Antonini, E., & Politi, S. (2021). Green building rating systems (GBRSs). Encyclopedia, 1(4), 998–1009. https://doi.org/10.3390/encyclopedia1040076
  • Masniari, O., & Koestoer, R. H. (2024). “Sustainable building materials for green construction: A review.” International Research Journal of Advanced Engineering and Science, 9(2), 68–72.
  • Park, J. (2017). “Critical review of the material criteria of building sustainability assessment tools.” Sustainability, 9(2), 186. https://doi.org/10.3390/su9020186
  • Röck, M., Saade, M., Balouktsi, M., Rasmussen, F. N., & Passer, A. (2020). Embodied GHG emissions in buildings—A review of current trends. Building and Environment, 181, 106445. https://doi.org/10.1016/j.buildenv.2020.106445
  • Taç, G., & Emekci, Ş. (2025). “Life cycle assessment and sustainable construction: A comprehensive review from theoretical foundations to practical strategies and innovative methods.” PLANARCH – Design and Planning Research, 9(1), 79–89. https://doi.org/10.54864/planarch.1527015
  • Tazmeen, T., & Mir, B. A. (2024). “Sustainability through materials: A review of green options in building construction.” Cleaner Materials, 5, 100219. https://doi.org/10.1016/j.rsurfi.2024.100206
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). “Effects of boric acid additive to pumice aggregate lightweight concrete properties.” International Journal of Scientific and Technological Research, 6(9), 1-10. https://doi.org/10.7176/JSTR/6-09-01
  • Wu, J., Ye, X., & Cui, H. (2025). “Recycled materials in construction: Trends, status, and future of research.” Sustainability, 17, 2636. https://doi.org/10.3390/ su17062636
  • Yahia, A. K. M., Rahman, M. M., Shahjalal, M., & Morshed, A. (2024). “Sustainable materials selection in building design and construction.” International Journal of Science and Engineering, 1(4), 106–119. https://doi.org/10.62304/ijse.v1i04.198
  • Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). “Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of sustainability performance.” Building and Environment, 46(5), 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002
  • Zhang, R., Zhang, Y., Sun, G., & Wei, H. (2025). “Low-carbon and recycled mineral composite materials for sustainable infrastructure: A comprehensive review.” Sustainability, 17(17), 7908. https://doi.org/10.3390/su17177908
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Derleme
Yazarlar

Selçuk Çimen 0000-0003-4536-7693

Gönderilme Tarihi 20 Kasım 2025
Kabul Tarihi 25 Kasım 2025
Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 12 Aralık 2025
DOI https://doi.org/10.51764/smutgd.1827440
IZ https://izlik.org/JA93BJ58BP
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Çimen, S. (2025). Yeşil Bina Tasarımında Sürdürülebilir Malzemeler: LCA Odaklı İnceleme. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 8(2), 263-271. https://doi.org/10.51764/smutgd.1827440