Araştırma Makalesi
BibTex RIS Kaynak Göster

Deneysel Mimarlık Üretiminde İnsansız Hava Araçlarının Rolleri

Yıl 2023, Cilt: 6 Sayı: 1, 51 - 61, 25.06.2023
https://doi.org/10.51764/smutgd.1225719

Öz

Teknolojinin hızla gelişmesine paralel olarak deneysel mimarlık üzerine yapılan çalışmalar mimarlıkta üretim şekillerinin çeşitlendirilmesinde önemli roller oynamaktadır. Üretim ve hizmet süreçlerinde robot kullanımı için artan talepler, deneysel mimarlık üzerine çalışan uzmanların dikkatini çekmektedir. Bu sayede insansız hava araçları da üretim süreçlerinde önemli bir özne haline gelmektedir. Bu çalışmanın amacı, insansız hava araçlarının rollerini mimarlık üretimine getirdiği yenilikçi çözümler üzerinden keşfetmeye dayanmaktadır. Araştırma oluşturulan kavramsal çerçeve paralelinde deneysel mimarlıkta insansız hava araçları ile üretime dair durum çalışmalarına odaklanmaktadır. Bu çalışmalara ait nesnel veriler SWOT analizi yöntemi ile sundukları güçlü yönler, zayıf yönler, fırsatlar ve tehditler üzerinden değerlendirilmektedir. Yapılan incelemeler neticesinde, durum çalışmaları içerisinde benzer teknoloji ile üretilmelerine rağmen farklı güçlü ve zayıf yönlerin ortaya çıktığı görülmektedir. Ancak, ortaya çıkan fırsatlar ve tehditlerin durum çalışmaları arasında benzerlikleri de söz konusudur. Seçili örnekler ile sınırlandırılan çalışma sonucunda, insansız hava araçları ile hibrit üretimin dünyada mevcut mimarlık anlayışlarını değiştirecek bir etkiye sahip olduğu anlaşılmaktadır.

Kaynakça

  • Agustí-Juan, I., Müller, F., Hack, N., Wangler, T. ve Habert, G. (2017). Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 154, 330–340. doi:10.1016/j.jclepro.2017.04.002
  • Augugliaro, Federico, Mirjan, A., Gramazio, F., Kohler, M. ve D’Andrea, R. (2013). Building tensile structures with flying machines. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems içinde (ss. 3487–3492). IEEE. doi:10.1109/IROS.2013.6696853
  • Augugliaro, Frederico, Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., … D’Andrea, R. (2014). The Flight Assembled Architecture installation: Cooperative construction with flying machines. IEEE Control Systems, 34(4), 46–64. doi:10.1109/MCS.2014.2320359
  • Braumann, J. ve Brell-Cokcan, S. (2012). Real-Time Robot Simulation and Control for Architectural Design. Digital Physicality Proceedings of the 30th eCAADe Conference, 2, 479–486.
  • Can, N. ve Kahveci, M. (2017). İnsansız Hava Araçları: Tarihçesi, Tanımı, Dünyada ve Türkiye’deki Yasal Durumu. Selcuk University Journal of Engineering ,Science and Technology, 5(4), 511–535. doi:10.15317/Scitech.2017.109
  • Chaltiel, S., Bravo, M., Veenendaal, D. ve Sayers, G. (2020). Drone Spraying on Light Formwork for Mud Shells. Design Transactions içinde (ss. 150–157). UCL Press. doi:10.2307/j.ctv13xprf6.30
  • D’Andrea, R., Augugliaro, F., Corzillius, M., Flores, C., Hamer, M., Hehn, M., … Thommen, I. (2011). Flying Machine Enabled Construction. ETH Zurich. http://www.idsc.ethz.ch/Research_DAndrea/fmec adresinden erişildi.
  • Erol, K. (2020). Deneysel Mimaride Bilgisayar Destekli Tasarımın Etkilerinin Okuması: Venedik Mimarlık Bienali Örnekleri. Tasarım Enformatiği, 2(2), 65–74. https://dergipark.org.tr/tr/pub/te/issue/66501/869947 adresinden erişildi.
  • Florio, W. ve Segall, M. L. (2009). Experimentation and Representation in Architecture: analyzing one’s own design activity. Undisciplined! Design Research Society Conference içinde (ss. 16–19). Sheffield Hallam University. http://shura.shu.ac.uk/493/ adresinden erişildi.
  • Früh, N. (2022). ICD/ITKE Research Pavilion 2016-17. https://www.icd.uni-stuttgart.de/projects/icditke-research-pavilion-2014-15/ adresinden erişildi.
  • Goessens, S., Mueller, C. ve Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, 94(June), 458–480. doi:10.1016/j.autcon.2018.06.015
  • Gramazio, F. ve Kohler, G. (2008). Digital Materiality in Architecture. Prestel Pub. https://books.google.com.tr/books?id=LIXWGAAACAAJ adresinden erişildi.
  • Hassija, V., Saxena, V. ve Chamola, V. (2020). Scheduling drone charging for multi-drone network based on consensus time-stamp and game theory. Computer Communications, 149(August 2019), 51–61. doi:10.1016/j.comcom.2019.09.021
  • Helms, M. M. ve Nixon, J. (2010). Exploring SWOT analysis – where are we now? Journal of Strategy and Management, 3(3), 215–251. doi:10.1108/17554251011064837
  • Hillier, B. (2007). Space is the machine. London: Space Syntax. doi:978-0-9556224-0-3
  • Khosiawan, Y. ve Nielsen, I. (2016). A system of UAV application in indoor environment. Production and Manufacturing Research, 4(1), 2–22. doi:10.1080/21693277.2016.1195304
  • Li, Y. ve Liu, C. (2019). Applications of multirotor drone technologies in construction management. International Journal of Construction Management, 19(5), 401–412. doi:10.1080/15623599.2018.1452101
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I. ve Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147. doi:10.3390/drones6060147
  • Pereira da Silva, N. ve Eloy, S. (2021). Robotic Construction: Robotic Fabrication Experiments for the Building Construction Industry. Advances in Science, Technology and Innovation içinde (ss. 97–109). doi:10.1007/978-3-030-35533-3_14
  • Sadler, S. (2005). Archigram Architecture Without Architecture. Cambridge, Massachusetts: MIT Press. https://www.ptonline.com/articles/how-to-get-better-mfi-results adresinden erişildi.
  • Sağocak, A. M. D. (1999). Mimarlığı Anlama ve Yorumlama Bağlamında Kavramsal Bir Model. https://tez.yok.gov.tr adresinden erişildi.
  • Schroth, L. ve Bödecker, H. (2021). Drone Market Report 2021-2026. Hamburg. https://droneii.com/product/drone-market-report adresinden erişildi.
  • Solly, J., Vasey, L., Knippers, J., Menges, A., Felbrich, B., Früh, N., … Saffarian, S. (2017). Multi-Machine Fabrication. ACADIA 2017: Disciplines & Disruption içinde (ss. 248–259). Cambridge, Massachusetts: MIT. http://papers.cumincad.org/data/works/att/acadia17_248.pdf adresinden erişildi.
  • Weissenböck, R. (2015). Robotic Design-Fabrication - Exploring Robotic Fabrication as a Dynamic Design Process. Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe içinde (C. 2, ss. 309–318). doi:10.52842/conf.ecaade.2015.2.309
  • Wigglesworth, S. (2005). Critical practice. The Journal of Architecture, 10(3), 335–346. doi:10.1080/13602360500162238
  • Wood, D., Yablonina, M., Aflalo, M., Chen, J., Tahanzadeh, B. ve Menges, A. (2019). Cyber Physical Macro Material as a UAV [re]Configurable Architectural System. Robotic Fabrication in Architecture, Art and Design 2018 içinde (ss. 320–335). Cham: Springer International Publishing. doi:10.1007/978-3-319-92294-2_25
  • Xu, M., David, J. M. ve Kim, S. H. (2018). The Fourth Industrial Revolution: Opportunities and Challenges. International Journal of Financial Research, 9(2), 90–95. doi:10.5430/ijfr.v9n2p90
  • Yıldız, S., Kıvrak, S. ve Arslan, G. (2021). Using drone technologies for construction project management: A narrative review. Journal of Construction Engineering, Management & Innovation, 4(4), 229–244. doi:10.31462/jcemi.2021.04229244
  • Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., … Kovac, M. (2022). Aerial additive manufacturing with multiple autonomous robots. Nature, 609(7928), 709–717. doi:10.1038/s41586-022-04988-4
  • URL-1 (2022). https://www.icd.uni-stuttgart.de/projects/icditke-research-pavilion-2016-17/ (Son Erişim Tarihi: 07.12.2022)
  • URL-2 (2022). https://gramaziokohler.arch.ethz.ch/web/e/projekte/209.html (Son Erişim Tarihi: 09.12.2022)
  • URL-3 (2022). https://www.icd.uni-stuttgart.de/teaching/master-theses/cyber-physical-macro-material-as-a-uav-reconfigurable-architectural-system/ (Son Erişim Tarihi: 11.12.2022)
  • URL-4 (2022). https://www.bath.ac.uk/announcements/3d-printing-drones-work-like-bees-to-build-and-repair-structures-while-flying/ (Son Erişim Tarihi: 13.12.2022)
  • URL-5 (2022). https://idsc.ethz.ch/research-dandrea/research-projects/aerial-construction.html (Son Erişim Tarihi: 14.12.2022)
  • URL-6 (2022). https://uclouvain.be/en/research-institutes/immc/gce/drone-based-construction.html (Son Erişim Tarihi: 17.12.2022)
  • URL-7 (2022). https://www.muddarchitects.com/mudshell (Son Erişim Tarihi: 18.12.2022)

Roles of Unmanned Aerial Vehicles in Experimental Architecture Production

Yıl 2023, Cilt: 6 Sayı: 1, 51 - 61, 25.06.2023
https://doi.org/10.51764/smutgd.1225719

Öz

Current studies on experimental architecture play an important role in the diversification of production forms in architecture with the rapid growth of technology. Increasing demands for the use of robots in production and service processes attract the attention of experts working in experimental architecture. This study explores unmanned aerial vehicles’ roles through their innovative solutions to architectural production. This research focuses on case studies for the production of unmanned aerial vehicles in experimental architecture within the conceptual framework. The objective data of these studies are evaluated with the SWOT analysis method through their strengths, weaknesses, opportunities, and threats. As a result of the examinations, it is seen that different strengths and weaknesses have emerged in the case studies, although they are produced with similar technology. However, there are also similarities between case studies of emerging opportunities and threats Thus, it is understood that hybrid production with unmanned aerial vehicles, which is limited to selected examples, has an effect that will change the current understanding of architecture in the world.

Kaynakça

  • Agustí-Juan, I., Müller, F., Hack, N., Wangler, T. ve Habert, G. (2017). Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 154, 330–340. doi:10.1016/j.jclepro.2017.04.002
  • Augugliaro, Federico, Mirjan, A., Gramazio, F., Kohler, M. ve D’Andrea, R. (2013). Building tensile structures with flying machines. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems içinde (ss. 3487–3492). IEEE. doi:10.1109/IROS.2013.6696853
  • Augugliaro, Frederico, Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., … D’Andrea, R. (2014). The Flight Assembled Architecture installation: Cooperative construction with flying machines. IEEE Control Systems, 34(4), 46–64. doi:10.1109/MCS.2014.2320359
  • Braumann, J. ve Brell-Cokcan, S. (2012). Real-Time Robot Simulation and Control for Architectural Design. Digital Physicality Proceedings of the 30th eCAADe Conference, 2, 479–486.
  • Can, N. ve Kahveci, M. (2017). İnsansız Hava Araçları: Tarihçesi, Tanımı, Dünyada ve Türkiye’deki Yasal Durumu. Selcuk University Journal of Engineering ,Science and Technology, 5(4), 511–535. doi:10.15317/Scitech.2017.109
  • Chaltiel, S., Bravo, M., Veenendaal, D. ve Sayers, G. (2020). Drone Spraying on Light Formwork for Mud Shells. Design Transactions içinde (ss. 150–157). UCL Press. doi:10.2307/j.ctv13xprf6.30
  • D’Andrea, R., Augugliaro, F., Corzillius, M., Flores, C., Hamer, M., Hehn, M., … Thommen, I. (2011). Flying Machine Enabled Construction. ETH Zurich. http://www.idsc.ethz.ch/Research_DAndrea/fmec adresinden erişildi.
  • Erol, K. (2020). Deneysel Mimaride Bilgisayar Destekli Tasarımın Etkilerinin Okuması: Venedik Mimarlık Bienali Örnekleri. Tasarım Enformatiği, 2(2), 65–74. https://dergipark.org.tr/tr/pub/te/issue/66501/869947 adresinden erişildi.
  • Florio, W. ve Segall, M. L. (2009). Experimentation and Representation in Architecture: analyzing one’s own design activity. Undisciplined! Design Research Society Conference içinde (ss. 16–19). Sheffield Hallam University. http://shura.shu.ac.uk/493/ adresinden erişildi.
  • Früh, N. (2022). ICD/ITKE Research Pavilion 2016-17. https://www.icd.uni-stuttgart.de/projects/icditke-research-pavilion-2014-15/ adresinden erişildi.
  • Goessens, S., Mueller, C. ve Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, 94(June), 458–480. doi:10.1016/j.autcon.2018.06.015
  • Gramazio, F. ve Kohler, G. (2008). Digital Materiality in Architecture. Prestel Pub. https://books.google.com.tr/books?id=LIXWGAAACAAJ adresinden erişildi.
  • Hassija, V., Saxena, V. ve Chamola, V. (2020). Scheduling drone charging for multi-drone network based on consensus time-stamp and game theory. Computer Communications, 149(August 2019), 51–61. doi:10.1016/j.comcom.2019.09.021
  • Helms, M. M. ve Nixon, J. (2010). Exploring SWOT analysis – where are we now? Journal of Strategy and Management, 3(3), 215–251. doi:10.1108/17554251011064837
  • Hillier, B. (2007). Space is the machine. London: Space Syntax. doi:978-0-9556224-0-3
  • Khosiawan, Y. ve Nielsen, I. (2016). A system of UAV application in indoor environment. Production and Manufacturing Research, 4(1), 2–22. doi:10.1080/21693277.2016.1195304
  • Li, Y. ve Liu, C. (2019). Applications of multirotor drone technologies in construction management. International Journal of Construction Management, 19(5), 401–412. doi:10.1080/15623599.2018.1452101
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I. ve Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147. doi:10.3390/drones6060147
  • Pereira da Silva, N. ve Eloy, S. (2021). Robotic Construction: Robotic Fabrication Experiments for the Building Construction Industry. Advances in Science, Technology and Innovation içinde (ss. 97–109). doi:10.1007/978-3-030-35533-3_14
  • Sadler, S. (2005). Archigram Architecture Without Architecture. Cambridge, Massachusetts: MIT Press. https://www.ptonline.com/articles/how-to-get-better-mfi-results adresinden erişildi.
  • Sağocak, A. M. D. (1999). Mimarlığı Anlama ve Yorumlama Bağlamında Kavramsal Bir Model. https://tez.yok.gov.tr adresinden erişildi.
  • Schroth, L. ve Bödecker, H. (2021). Drone Market Report 2021-2026. Hamburg. https://droneii.com/product/drone-market-report adresinden erişildi.
  • Solly, J., Vasey, L., Knippers, J., Menges, A., Felbrich, B., Früh, N., … Saffarian, S. (2017). Multi-Machine Fabrication. ACADIA 2017: Disciplines & Disruption içinde (ss. 248–259). Cambridge, Massachusetts: MIT. http://papers.cumincad.org/data/works/att/acadia17_248.pdf adresinden erişildi.
  • Weissenböck, R. (2015). Robotic Design-Fabrication - Exploring Robotic Fabrication as a Dynamic Design Process. Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe içinde (C. 2, ss. 309–318). doi:10.52842/conf.ecaade.2015.2.309
  • Wigglesworth, S. (2005). Critical practice. The Journal of Architecture, 10(3), 335–346. doi:10.1080/13602360500162238
  • Wood, D., Yablonina, M., Aflalo, M., Chen, J., Tahanzadeh, B. ve Menges, A. (2019). Cyber Physical Macro Material as a UAV [re]Configurable Architectural System. Robotic Fabrication in Architecture, Art and Design 2018 içinde (ss. 320–335). Cham: Springer International Publishing. doi:10.1007/978-3-319-92294-2_25
  • Xu, M., David, J. M. ve Kim, S. H. (2018). The Fourth Industrial Revolution: Opportunities and Challenges. International Journal of Financial Research, 9(2), 90–95. doi:10.5430/ijfr.v9n2p90
  • Yıldız, S., Kıvrak, S. ve Arslan, G. (2021). Using drone technologies for construction project management: A narrative review. Journal of Construction Engineering, Management & Innovation, 4(4), 229–244. doi:10.31462/jcemi.2021.04229244
  • Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., … Kovac, M. (2022). Aerial additive manufacturing with multiple autonomous robots. Nature, 609(7928), 709–717. doi:10.1038/s41586-022-04988-4
  • URL-1 (2022). https://www.icd.uni-stuttgart.de/projects/icditke-research-pavilion-2016-17/ (Son Erişim Tarihi: 07.12.2022)
  • URL-2 (2022). https://gramaziokohler.arch.ethz.ch/web/e/projekte/209.html (Son Erişim Tarihi: 09.12.2022)
  • URL-3 (2022). https://www.icd.uni-stuttgart.de/teaching/master-theses/cyber-physical-macro-material-as-a-uav-reconfigurable-architectural-system/ (Son Erişim Tarihi: 11.12.2022)
  • URL-4 (2022). https://www.bath.ac.uk/announcements/3d-printing-drones-work-like-bees-to-build-and-repair-structures-while-flying/ (Son Erişim Tarihi: 13.12.2022)
  • URL-5 (2022). https://idsc.ethz.ch/research-dandrea/research-projects/aerial-construction.html (Son Erişim Tarihi: 14.12.2022)
  • URL-6 (2022). https://uclouvain.be/en/research-institutes/immc/gce/drone-based-construction.html (Son Erişim Tarihi: 17.12.2022)
  • URL-7 (2022). https://www.muddarchitects.com/mudshell (Son Erişim Tarihi: 18.12.2022)
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Hakan İmert 0000-0001-9216-8596

Erken Görünüm Tarihi 25 Haziran 2023
Yayımlanma Tarihi 25 Haziran 2023
Gönderilme Tarihi 28 Aralık 2022
Kabul Tarihi 26 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA İmert, H. (2023). Deneysel Mimarlık Üretiminde İnsansız Hava Araçlarının Rolleri. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 6(1), 51-61. https://doi.org/10.51764/smutgd.1225719